
URL sources

https://github.com/lstorchi/mpisttest

https://github.com/lstorchi/mpisttest
https://github.com/lstorchi/mpisttest

Compute PI using a Monte Carlo
Approach
A circle of radius R is inscribed inside a square with side length 2*R, if so
the area of the circle will be Ac = PI*R2 and the area of the square will be
As = (2*R)2. So the ratio of the area of the circle to the area of the square
will be Ac / As = PI/4.

If a program picks N points (x, y) at
random inside the square. If a point is
inside the circle (i.e. if x2 + y2 < R2) M
is incremented by one.

Thus finally: PI =- 4 * M / N

Pseudo code

N = 2000
circle_count = 0
for i = 1 to N
 x = random value (0.0, 1.0)
 y = random value (0.0, 1.0)
 if x2 + y2 < 1.0
 circle_count = circle_count + 1
 endif
endfor
pi = 4 * (circle_count / N)

Parallel version

● Each one of the P MPI processes will generate N/P
random points (clue each process should use a different
seed)

● You need to sum the final value of circle_count (you

may need to use the MPI_Reduce)

● As in the serial code you may now estimate the PI value

● N could be a command line argument

Exercise

● Implement the serial version of the code starting from
the pseudo code (suggestion the number of random
points can be a command line argument)

● Implement the parallel version and, depending on the
number of cores of the VM you are using, calculate the
speedup (MPI_Wtime() Returns time in seconds
since an arbitrary time in the past. clock_t
clock(void) returns the number of clock ticks
elapsed since the program was launched. To
get the number of seconds used by the CPU,
you need to divide by CLOCKS_PER_SEC.)

MPI functions (C API)

● MPI_Init (&argc, &argv);

● MPI_Comm_size (MPI_COMM_WORLD, &size);

● MPI_Comm_rank (MPI_COMM_WORLD, &rank);

● MPI_Barrier (MPI_COMM_WORLD);

● MPI_Reduce (&circle_count, &t_circle_count,
1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

● MPI_Finalize ();

Broadcast

We will explore the differences between a naive approach to perform a
broadcast and a more sophisticated one

Naive (flat tree) need n-1 point to point communications, T(msize) = time
to send a message of size msize, so Time = (n-1) * T(msize) so O(n)

Broadcast

Now using a binary tree we are able to reduce the
communication time (Time = O(log2(n)))

Bcast pseudocode

fromrank = (int) ((myrank-1)/2)

if (myrank > 0)
 Recv data from fromrank

torank1 = 2 * myrank + 1;
torank2 = 2 * myrank + 2;

if (torank1 < size)
 Send data to torank1
if (torank2 < size)
 Send data to torank2

Exercise

● Implement the two version of the broadcast the one
using the flat tree and the other using the binary tree.
You will breadcast in both cases a vector of dimension
N , where N again could be a command line argument.

MPI functions (C API)

● int MPI_Send(const void *buf, int
count, MPI_Datatype datatype, int
dest, int tag,
MPI_Comm comm)

MPI_Send (sbuf, bufdim, MPI_DOUBLE,
torank1, torank1, MPI_COMM_WORLD);

MPI functions (C API)

● int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status
*status)

MPI_Status status;

MPI_Recv (sbuf, bufdim, MPI_DOUBLE,
fromrank, myrank, MPI_COMM_WORLD,
&status);

MPI complexity

Serial code optimization

Parallel computing era, however …. to be cache friendly:

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

 for (i=0; i<N; i++)
 for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Serial code optimization

Serial code optimization

Keep the pipeline full, loop unrolling:

 for (i=0; i<N; i++) {
 for (k=0; k<N; k++) {
 for (j=0; j<N; j +=8) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 c[i][j+1] = c[i][j+1] + a[i][k] * b[k][j+1];
 c[i][j+2] = c[i][j+2] + a[i][k] * b[k][j+2];
 c[i][j+3] = c[i][j+3] + a[i][k] * b[k][j+3];
 c[i][j+4] = c[i][j+4] + a[i][k] * b[k][j+4];
 c[i][j+5] = c[i][j+5] + a[i][k] * b[k][j+5];
 c[i][j+6] = c[i][j+6] + a[i][k] * b[k][j+6];
 c[i][j+7] = c[i][j+7] + a[i][k] * b[k][j+7];
 }
 }
 }

