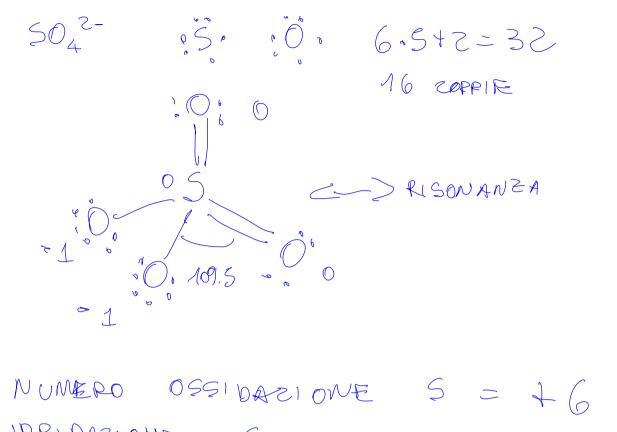
INGEGNERIA DELLE COSTRUZIONI CORSO DI SCIENZA DEI MATERIALI


COGNOME	NOME											
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle risposte esatte verranno assegnati +4 punti mentre a quelle errate –1. Alle domande a cui non si risponde verrà assegnato un punteggio nullo. Non è consentita la consultazione di libri o appunti.												
1 - Un ossido di manganese contiene 1,72 g di manganese per grammo di ossigeno. Quale è la formula empirica di tale composto?	presenta ΔH = $-906,2$ kJ. Sapendo che $\Delta Hf^{\circ}(NH_3)$ = $-45,9$ kJ·mol $^{-1}$ e $\Delta Hf^{\circ}(H_2O)$ = $-241,8$ kJ·mol $^{-1}$, calcolare ΔHf° (NO) .											
$\begin{array}{ccc} \square & A- & Mn_2O_7 \\ \hline \square & B- & MnO_2 \\ \hline \square & C- & Mn_2O_3 \\ \hline \square & D- & MnO_3 \end{array}$	 A - 90,25 kJ·mol⁻¹ B - 361 kJ·mol⁻¹ C361 kJ·mol⁻¹ D90,25 kJ·mol⁻¹ 											
2 – A 25°C la tensione di vapore del benzene puro è 0,125 atm. Se 0,6 moli di naftalene vengono sciolte in 200 g di benzene, C_6H_6 , quale è la nuova tensione di vapore del benzene?	3 – L'acido nitroso, HNO ₂ , è un acido debole. Se si sciolgono 0,1 moli di nitrito di sodio, NaNO ₂ , ad un litro d'acqua quale delle seguenti affermazioni è falsa ?											
□ A - la tensione di vapore resta invariata □ B - 0,149 atm □ C - 0,024 atm □ D - 0,101 atm	□ A - la concentrazione di ioni Na ⁺ diventa 0,1 M □ B- la concentrazione di ioni OH diminuisce dopo l'aggiunta di NaNO ₂ □ C - la concentrazione di HNO ₂ aumenta dopo l'aggiunta di NaNO ₂											
3 – Quale e' il numero atomico (Z) dell'elemento C:	□ D - la soluzione diventa basica											
□ A - 12 □ B - 6 □ C - 8 □ D - 4 4 - La reazione $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$	5 – Sono presenti meno atomi di idrogeno in 100,0 g di: A - naftalene, C ₁₀ H ₈ (PM=128) B - benzene, C ₆ H ₆ (PM=78) C - acetilene, C ₂ H ₂ (PM=26) D - toluene, C ₇ H ₈ (PM=92)											

Costanti utili

Numero di Avogadro, N = $6,022\times10^23$; Costante dei gas, R = 0,0821 L atm moli-1 K-1 = 8,314 J moli-1 K-1; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^8$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s Costante di Faraday, F=96500 C/mol

IA	IIA	IIIA IVA VA VIA VIIA															
Н																	He
1,008																4,00	
Li	Be											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93	58,69	63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107,9			118,7				

Scrivere la struttura di Lewis dello ione **solfato** indicando anche esplicitamente le cariche formali dei vari atomi oltre che il numero di ossidazione dell'atomo di zolfo. Indicare inoltre I valori degli angoli di legame nonché l'ibridazione dell'atomo centrale (**6 punti**)

