

Python Functions and I/O

Loriano Storchi

loriano@storchi.org

http:://www.storchi.org/

mailto:loriano@storchi.org

Functions

● A function generally receives parameters that are generally
memory addresses or values. A function receives the
parameters in input then executes a certain sequence of
operations and returns some result

● The parameters (formal parameters) are the variables are the variables
that I find in the definition of the functionthat I find in the definition of the function. For example
in python: def function_name (a, b, c)

● While the arguments (or actual parameters) are the
actual variables passed in input when the function is
called. For example in python: function_name (x, y, z)

Functions

Functions

Functions

PARAMETERS

Parameters

● Passing parameters by value implies that the actual
parameters are copied into the formal parameters, and
therefore the function works on a copy of the values
when they are modified this is not reflected yes actual
parameters

● Passing the parameters by reference: in this case a
"pointer" is passed then the function can modify the
formal parameter, for example, and this will affect the
current parameter

By value or by reference

Brief digression: pointers

● A pointer is a "special" variable that contains the address
to a zone of memory

Brief degerssion 2

1868554915

 0

a[0]

a[1]

pb176a8a0

hexadecimal

PARAMETERS PYTHON

Mutable or not

● Arguments are passed by assigning objects to local
names.

● Remember what happens when we assign a value to a
variable, in reality we are simply pointing that variable to a
given memory location.

● If the object that I pass to the function is mutable I can
then modify it

● If the object is not mutable I will not be able to modify it

Mutable or Immutable

● Immutable Objects : These are of in-built types like int,
float, bool, string, tuple. In simple words, an immutable
object can’t be changed after it is created.

Mutable or Immutable

● Mutable Objects : These are of type list, dict, set .
Custom classes are generally mutable.

Mutable or not

● Mutable and immutable objects are handled differently in
python. Immutable objects are quicker to access and
are expensive to change, because it involves creation
of a copy. Whereas mutable objects are easy to
change.

● Use of mutable objects is recommended when there is a
need to change the size or content of the object.

● As a rule of thumb, Generally Primitive-like types are
probably immutable and Customized Container-like
types are mostly mutable.

Mutable: lists

Immutable

● Python strings are not mutable, so what happens when I
pass a string as a parameter to a function?

When inside the function I write valin = "output" I am creating a new string
object that contains the value "output" and I am making valin point to this new
memory address

Immutable 2

● if I need to act to change the value of the string passed in
input:

FUNCTIONS PYTHON

Functions

● To define a function in python, use the keyword def

● Let's take a simple example a function that calculates the
average value given as input a list of numbers

Functions

● A function in python is able to return more than one value

Scope: n exists
only within the

function

Functions

● A function can have default parameters. For example a
function that divides all the elements of the list for a given
number

EXERCISE

Exercise 1

● Write a program that calculates the solution of a quadratic
equation using a function (you may start from solv.py)

Exercise 2

● Write a function that: given a list of numbers, a scalar and
a character executes, accordingly to the character's value,
one of the four fundamental operations +, - *, /

This is the
main

Exercise 2
● Input list , scalar and character

● for value in list

● If character equal to +

● append to the result list value + scalar

● else if character equal to -

● append to the result list value - scalar

● else if character equal to *

● append to the result list value * scalar

● else if character equal to /

● append to the result list value / scalar

● Return result list

Exercise 2

● We may use also a dictionary where the key is a character
and value is a function name (reference)

FILE I/O

Files

● A file is a container in a computer system for storing
information. Files used in computers are similar in features
to that of paper documents used in library and office files.
There are different types of files such as text files, data
files, directory files, binary and graphic files, and these
different types of files store different types of information.
In a computer operating system, files can be stored on
optical drives, hard drives or other types of storage
devices.

Input and output: files

● The open() function opens a file, and returns it as a file
object.

f = open (“/path/nomefile”, ”r”)

r = read-only

w = to write and ASCII file

a = append mode

the close method can be used to close a file: f.close()

Read from a file

● The method readlines() reads until EOF using readline()
and returns a list containing the lines. If the optional
sizehint argument is present, instead of reading up to EOF,
whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read.

● The method seek() sets the file's current position at
the offset. The whence argument is optional and defaults
to 0, which means absolute file positioning, other values
are 1 which means seek relative to the current position
and 2 means seek relative to the file's end.

Read from a file : iofileread.py

Read from a file : iofileread.py

Read from a file : iofileread.py

The method seek() sets the file's current position at the offset.

Read from a file Colab

Write into a file

● write() to writes one line at a Time to a File in Python

● writelines(): Writing All The Lines at a Time to a File

● We may use also print to write something to a file in
python

Write into a file: iofilewrite.py

Write into a file: iofilewrite1.py

Write into a file: Colab

EXERCISE

Exercise

● Read n numbers from a file calculates mean and standard
deviation (suggestion maybe you’ll need to use the split
method). Calculation of the standard deviation see Welford
method (also in Donald Knuth's Art of Computer
Programming) and see numpy

● https://www.storchi.org/lecturenotes/ipfi/8/numbers.txt

Exercise

● varianceavg(values):

● moldm = values[0] mnewm = values[0]

● molds = 0.0 mnews = 0.0

● for k from 1 to N:

● x = values[i]

● mnewm = moldm + (x - moldm)/(i+1)

● mnews = molds + (x - moldm)*(x - mnewm)

● moldm = mnewm

● molds = mnews

● s = math.sqrt(mnews/(i+1))

● m = mnewm

● return S/(N-1)

Exercise: or use the naive
algorithm

● Let n ← 0, Sum ← 0, SumSq ← 0

● For each data in x:

● n ← n + 1

● Sum ← Sum + x

● SumSq ← SumSq + x × x

● Var = (SumSq − (Sum × Sum) / n) / (n − 1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

