ESAME DI CHIMICA

Compito scritto – 11 Luglio 2022

COGNOMENO	OMEMAT
Segnare con una crocetta la risposta (una sola) che si ritiene es. Alle domande a cui non si risponde verrà assegnato un punteggio	atta. Alle risposte esatte verranno assegnati +3 punti mentre a quelle errate –1. nullo. Non è consentita la consultazione di libri o appunti.
1 – Calcolare la costante crioscopica del benze (C ₆ H ₆) sapendo che il benzene puro congela a 4,90 °C che una soluzione ottenuta sciogliendo 5,0 g di C ₆ H ₁₂ in 100 g di benzene congela a 3,40 °C	Ce B - forze di London
□ A - 1,80 °C/m	
□ B - 3,60 °C/m	5 – Calcolare la f.e.m. della seguente pila:
□ C - 2,16 °C/m	$Zn(s) ~Zn^{2+}~0,002~M~ ~HCl(aq)~1,10~M~ H_2~0,8~atm Pt(s)$
□ D - 5,40 °C/m	$E^{\circ}(Zn/Zn^{2+}) = -0.76 \text{ V}$
2 – Bilanciare la seguente reazione in ambiente acido:	-
a I $^-$ + b NO $_3^ \rightarrow$ c I $_2$ + d NO Quali sono i coefficienti a,b,c,d?	□ A - 0,64 V □ B - 0,71 V
□ A - a=3, b=2, c=3, d=2 □ B - a=6, b=1, c=3, d=2	□ C - 0,73 V
□ C - a=6, b=2, c=3, d=2 □ D - a=3, b=1, c=3, d=2	□ D - 0,84 V
3 – Calcolare la solubilità di CaF ₂ , sale poco solubi con Kps = 3.9×10^{-11} in una soluzione 0,005 M di Na (sale solubile).	
`	$\Box A - H_2O(s) \to H_2O(g)$
\Box A - 6,24×10 ⁻⁶ M \Box B - 1,56×10 ⁻⁶ M	$\Box \ B - NaCl(s) \to Na^{+}(g) + Cl^{-}(g)$
\Box C - 7,80×10 ⁻⁸ M \Box D - 2,14×10 ⁻⁴ M	$\Box C - H(g) + H(g) \rightarrow H_2(g)$
4 – Nel ossido di carbonio liquido le molecole di CO	□ D - CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)
interagiscono fra loro mediante:	
□ A - legami ad idrogeno	

Costanti utili

Numero di Avogadro, N = $6,022\times10^23$; Costante dei gas, R = 0,0821 L atm moli-1 K-1 = 8,314 J moli-1 K-1; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times108$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s Costante di Faraday, F=96500 C/mol

В																	
IA	II											III	IV	VA	VI	VI	
	A											A	A		A	IA	
Н																	Не
1,0																	4,0
08																	0
Li	Be											В	C	N	О	F	Ne
6,9	9,0											10,	12,	14,	16,	19,	20,
41	12											81	01	01	00	00	18
Na	Mg											Al	Si	P	S	Cl	Ar
22,	24,											26,	28,	30,	32,	35,	39,
99	30											98	09	97	07	45	95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,	40,		47.		52,	54,	55,	58,		63,	65,					79,	
10	08		90		00	94	85	93		55	39					90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107			118				131
										,9			,7				,1

^{1 –} Descrivere brevemente le due (principali) forme allotropiche del carbonio (3 punti)

н.	

2 - Descrivere le caratteristiche strutturali e chimiche degli Acidi Carbossilici (**4 punti**)

B3 - Completate le seguenti affermazioni cerchiando l'alternativa corretta (1 punti)
a) La variazione di energia libera per un processo spontaneo è: maggiore di/minore di/uguale a zero.
b) Un composto poco volatile è caratterizzato da un: alto/basso punto di ebollizione.
c) I forti ossidanti hanno potenziali standard di riduzione: grandi e negativi/ piccoli e negativi/ piccoli e positivi/grandi e positivi .
4 - Giustificare la risposta data nell'esercizio numero 6 (2 punti)

5 - Soluzioni solide sostituzionali ed interstiziali, descrivere brevemente le differenze (2 punti)

5 - Disegnare la struttura del 3-metil-2-pentene , indicato di che tipo di idrocarburo si tratti oltre che lo stato di ibridazione degli atomi di carbonio **(3 punti)**