COGNOME:	NOME:	Matr:	

PROVA SCRITTA CHIMICA TPALL

1) Bilanciare la seguente reazione in ambiente acido: $Cr_2O_7^{2-} + SO_3^{2-} \rightarrow Cr^{3+} + SO_4^{2-}$

$$8 H^{+} + Cr_{2}O_{7}^{2-} + 3 SO_{3}^{2-} \rightarrow 2 Cr^{3+} + 3 SO_{4}^{2-} + 4 H_{2}O_{3}^{2-}$$

$$(503^{27} + H_20 > 50_4^{27} + ze^{-} + 2H^{+})$$
 3

2) Calcolare il pH di una soluzione di HF 0.010 M (K_a = 7.2 x 10⁻⁴).

[H₃O⁺] = 0.00268 M da cui pH = 2.57

3a) Calcolare quanti grammi di glucosio, $C_6H_{12}O_6$, si devono sciogliere in 500 g di acqua per abbassarne la temperatura di congelamento a $-4.00^{\circ}C$. (La costante crioscopica dell'acqua è $K_c=1,86$)

 $M_{glucosio} = 193.5 g$ $\Delta T = K \cdot M \cdot i$ $= K \cdot M \cdot i$ = K

3b) Una soluzione satura di PbF_2 presenta una concentrazione di ioni F^- pari a 4.2 x 10^{-3} M. Si calcoli il K_{ps} del fluoruro di piombo.

$$K_{PS} = 3.7 \times 10^{-8}$$

3c) A 25° C in un recipiente si mescolano una certa quantita' di I₂(s) e Br₂(l). Si instaura il seguente equilibrio:

ad equilibrio raggiungo la pressione parziale di IBr(g) e' pari a 0.220 atm. Clacolare la costante d'equilibrio K_p

$$K_p = 4.84 \times 10^{-2}$$

3d) Quale e' la pressione totale (in atm) di una miscela di gas composta da 1.0 g di H_2 e 8.0 g di Ar a 25° C misurata in un contenitore di 1.0 L ?

 $P_{TOT} = 17.2$ atm

$$P = \frac{MRT}{V}$$
 olave $M = M_{12} + M_{AR}$

$$\frac{1}{2} = 0.5$$

$$\frac{39.95}{39.95} = 0.2$$

$$M_{tot} = 0.7$$

P= 17-2 otm

3e) L'argento metallico reagisce con l'acido nitrico secondo la reazione: $3 \text{ Ag(s)} + 4 \text{ HNO}_3(\text{aq}) \rightarrow 3 \text{ AgNO}_3 \text{ (aq)} + \text{NO(g)} + 2 \text{ H}_2\text{O(l)}$ Quale volume di una soluzione di acido nitrico 1.15 M occorre per reagire completamente con 0.784 g di argento?

V = 8.42 mL

$$M_{Ag} = \frac{0.784}{107.9} = 0.0073 \text{ moli}$$
 $M_{HNO_3} = M_{Ag} \cdot \frac{4}{3} = 0.0097 \text{ moli}$
 $V_{HNO_3} = \frac{0.0097}{1.15} = 0.00842 \text{ L}$

Costanti utili

Numero di Avogadro, N = $6,022\times10^{23}$; Costante dei gas, R = 0,0821 L atm moli $^{-1}$ K $^{-1}$ = 8,314 J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^{8}$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

IA	IIA	IIIA IVA VA VIA VIIA															
Н																He	
1,008																4,00	
Li	Be											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg	<u> </u>										Al	Si	P	S	Cl	Ar
22,99	24,30	$\overline{30}$										26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
					95,94								118,7		127,6		