FACOLTÀ DI FARMACIA – C.d.L. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA

Compito scritto – 25 Giugno 2013

COGNOME	NOME	MAT
Segnare con una crocetta la risposta (una sola) che si rit Alle domande a cui non si risponde verrà assegnato un pi		esatte verranno assegnati +2 punti mentre a quelle errate –1/2. nsentita la consultazione di libri o appunti.
1 - La reazione a 25 °C:		
$A + 2B \rightarrow C$ ha costante cinetica di 1,4× 10 ⁻¹ ed è di ordine 2 ad A e di ordine 1 rispetto a B. Calcolare la velo iniziale di reazione per una miscela in cui [B]=0 [A]=2× [B].	ocità 125	Una soluzione acquosa di acido cloridrico ha =3. Quanti grammi di soda si devono aggiungere a mL della soluzione di acido cloridrico per avere =5 ?
$ □ A - 1,40 × 10^{-1} $ $ □ B - 9,45 × 10^{-4} $ $ □ C - 1,89 × 10^{-3} $ $ □ D - 3,78 × 10^{-3} $		A - 3,20 g B - 8,00× 10 ⁻² g C - 4,95× 10 ⁻³ g D - i dati sono insufficienti
2 - L'analisi elementare di un farmaco li seguenti risultati: C = 48,00%; H = 5,600%; O = 12,80%; N = 3 Determinare la formula minima del farmaco.	na dato i avv	Lo scambio di CO_2 tra la cellula ed il sangue iene tramite il seguente equilibrio: $CO_2(g)+2H_2O(l)\big _{cellula} \rightleftharpoons \big HCO_3^-(aq)+H_3O^+(aq)\big _{sangue}$ a diminuzione del pH del sangue determinerà
$\begin{array}{c} \square \ A - C_7 H_{15} O_3 N_2 \\ \square \ B - C_8 H_8 O_2 N \\ \square \ C - C_5 H_7 O N_3 \\ \square \ D - C_9 H_{13} O_2 N \end{array}$		 A - diminuzione di CO₂ nella cellula B - diminuzione di bicarbonato nel sangue C - il pH non influenza l'equilibrio D - aumento di bicarbonato nel sangue
3- Indicare lo stato di ibridazione dell' centrale nelle seguenti molecole o ioni: HCN NO ₃ ⁻ H ₂ S □ A - sp ³ sp ³ sp ² □ B - sp sp ² sp ³ □ C - sp sp ² sp ² □ D - sp ³ sp sp sp ³	9-	abilità più bassa? A - cianuro, Kps = 3,16×10 ⁻²³ B - idrossido, Kps = 4,79×10 ⁻¹⁷ C - carbonato, Kps = 1,45×10 ⁻¹¹ D - fosfato, Kps = 9,12×10 ⁻³³
4 – Calcolare il punto di ebollizione di una sacquosa di nitrato di calcio 17,5% in peso. (La ebullioscopica dell'acqua vale 0,52 °C/m)	soluzione S ₂ C costante	$O_4^{2-}(aq) + H^+(aq) \rightarrow H_2(g) + SO_4^{2-}(aq)$ anti litri di H_2 misurati a 37 °C e 1,5 atm si
□ A - 99,33 °C □ B - 102,02 °C □ C - 97,98 °C □ D - 100,67 °C	otte	engono a partire da 1,5 moli di S ₂ O ₄ ²⁻ ? A - 489,3 L B - 50,90 L C - 76,39 L
5 - Per una reazione caratterizzata da:		D - 81,55 L
ΔH >0 e ΔS <0 La variazione di energia libera è	10 -	ere rappresentate da più formule di risonanza:
\square A - sempre positiva \square B - positiva per T < (ΔH/ΔS) \square C - negativa per T < (ΔH/ΔS) \square D - sempre negativa		` '

□ C -	tutte
□ D -	(a), (c) e (d)
□ D -	(a), (c) e (d)

11- Una soluzione tampone viene preparata aggiungendo 1,5 moli di acido cloridrico ad una soluzione acquosa contenente 3 moli di ammoniaca (pKb = 5). Indicare il pH e la coppia acido-base del tampone.

```
\square A - pH = 9; tampone NH<sub>4</sub>+/OH<sup>-</sup>

\square B - pH = 9; tampone NH<sub>4</sub>+/NH<sub>3</sub>

\square C - pH = 5; tampone HCl/NH<sub>3</sub>

\square D - pH = 5; tampone NH<sub>4</sub>+/NH<sub>3</sub>
```

12 – Calcolare quanti litri di perossido di idrogeno gassoso, misurati a 3,5 atm e 115 °C, sono necessari per produrre 12,0 Kg di ossigeno secondo la reazione <u>da</u> <u>bilanciare</u>:

 $H_2O_2(g) \rightarrow H_2O(g) + O_2(g)$

```
\Box A - 6,83× 10<sup>3</sup> \Box B - 3.41× 10<sup>3</sup>
```

 \Box C - 1,71×10³

 \square D - 1,37× 10⁴

13 - Calcolare la forza elettromotrice a 25 °C della seguente pila:

 $Ag(s)|Ag^{+}(aq) (0.25 M) \parallel Ag^{+}(aq) (0.5 M)|Ag(s)$

□ A - - 0.02 V

□ B - 0,02 V □ C - 0,09 V

□ D - i dati non sono sufficienti

14 - Calcolare il calore assorbito dalla dissoluzione di 15,0 g di nitrato di sodio, sapendo che la dissoluzione di una mole assorbe 7,3 kcal.

□ A - 7,3 kcal

□ B - 1,29 kcal

□ C - 0,73 kcal

□ D - 0,13 kcal

15 – 10,0 g di cianuro di potassio vengono sciolti in 250 mL di acqua. Calcolare il pH della soluzione ottenuta. Sapendo che l'acido cianidrico è debole con pKa=10.

□ A - 5,11

□ B - 2,11

□ C - 8,89

□ D - 11,9

16 – Si consideri in seguente equilibrio:

 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$

In un reattore di 200 L e a 500 °C vengono poste a reagire 32 moli di monossido di carbonio e 32 moli di acqua. Calcolare la pressione parziale di idrogeno ad equilibrio raggiunto, sapendo che a 500 °C Kp=2,08.

□ A - 33,1 atm

☐ B - i dati sono insufficienti

□ C - 5,99 atm

□ D - 10,2 atm

Costanti utili

Numero di Avogadro, $N=6,022\times10^{23}$; Costante dei gas, R=0,0821 L atm $moli^{-1}$ $K^{-1}=8,314$ J $moli^{-1}$ K^{-1} ; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce $c=3,00\times10^{8}$ m/s Costante di Planck $h=6,63\times10^{-34}$ J·s Costante di Faraday, F=96500 C/mol

IA	IIA											IIIA	IVA	VA	VIA	VIIA	
Н																	He
1,008																	4,00
Li	Be											В	С	N	O	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107,9			118,7				131,1