DIPARTIMENTO DI FARMACIA CORSO DI CHIMICA GENERALE ED INORGANICA

24 Settembre 2013

COGNOMENOME	MAT						
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. All Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	le risposte esatte verranno assegnati +2 punti mentre a quelle errate –1/2. . Non è consentita la consultazione di libri o appunti.						
1 – Data una soluzione 10 ⁻⁸ M di HCl il suo pH e':	☐ C - O₂ effonde più velocemente di He						
•	□ D - La miscela contiene il 55 % in peso di CO ₂						
☐ A – maggiore di 7							
B – minore di 7	7 - Calcolare la forza elettromotrice della seguente pila:						
□ C − 6	Fe(s) Fe ²⁺ (aq) (0,015 M) Ag ⁺ (aq) (0,015 M) Ag(s) E°anodo = $-0,44 \text{ V}$; E°catodo = $0,80 \text{ V}$						
□ D – 8	E anodo – -0,44 v , E catodo – 0,00 v						
2 – Mn(OH) ₂ e AgCl sono sali poco solubili. Quali delle	□ A - 1,19 V						
seguenti affermazioni è vera :	□ B - 1,14 V						
	□ C - 1,16 V						
□ A − La solubilità di AgCl aumenta a pH<7.	□ D - 1,23 V						
□ B − La solubilità di entrambi i sali aumenta a pH<7.							
□ C − La solubilità di Mn(OH) ₂ aumenta a pH>7.	8 - Calcolare il calore assorbito dalla dissoluzione di 10,0 g di nitrato di ammonio, sapendo che la						
\square D – La solubilità di Mn(OH) ₂ aumenta a pH<7	dissoluzione di una mole assorbe 20,9 kJ.						
3 – Bilanciare la seguente reazione di ossidoriduzione							
in ambiente acido:	□ A - 26,1 kJ						
$a C_2 O_4^{2-} + b IO_3^- \rightarrow c CO_3^{2-} + d I^-$	□ B - 0,21 kJ						
	□ C - 2,6 kJ						
\Box A - $a = 3$; $b = 1$; $c = 3$; $d = 1$;	□ D - 20,9 kJ						
□ B - $a = 3$; $b = 1$; $c = 6$; $d = 1$; □ C - $a = 1$; $b = 1$; $c = 2$; $d = 1$;	9 – 10,0 g di fluoruro di sodio vengono sciolti in 250						
\Box C = $(a-1, b-1, c-2, a-1, a-2, a-2, a-2, a-2, a-2, a-2, a-2, a-2$	mL di acqua. Calcolare il pH della soluzione ottenuta,						
u = 1, v = 3, c = 1, u = 0,	sapendo che l'acido fluoridrico è debole con						
4 - Quale gas a 546°C e 1,5 atm ha la stessa densità	$Ka=1,0\times 10^{-4}$.						
dell'ossigeno, O ₂ , a 0°C e 1 atm?	D A 5.01						
	□ A - 5,01						
$\square A - N_2$	□ B - 8,99 □ C - 2,01						
□ B - NH ₃	□ D - 12,0						
\square C - SO ₂ \square D - SO ₃	1 D - 12,0						
□ D - 3O ₃	10 – Si consideri in seguente equilibrio:						
5 – Quale delle seguenti coppie acido-base coniugati è	$C(s) + H_2O(g) = CO(g) + H_2(g)$						
la piu' adatta per preparare un tampone a pH=5?	In un reattore di 200 L e a 800 °C vengono poste a						
	reagire 36 moli di carbonio e 36 moli di acqua. Calcolare la pressione parziale di idrogeno ad equilibrio						
\square A - H_2SO_3 / HSO_3 (Ka (H_2SO_3)= 1,2×10 ⁻²)	raggiunto, sapendo che a 800 °C Kp=2,85.						
□ B - HCl / Cl ⁻	aggrants, superior ene a soo strip 1,000						
\square C - HF / F ⁻ (Ka (HF)= 4,5× 10 ⁻⁴) \square D - NH ₄ ⁺ / NH ₃ (Kb (NH ₃)= 1,8× 10 ⁻⁵)							
$\Box D - N\Pi_4 / N\Pi_3$ (KU (N Π_3)- 1,0× 10 °)	□ A - 5,45 atm						
6 – Data una miscela di gas composta da:	☐ B - dati insufficienti						
- 1 mole di He	☐ C - 15,9 atm						
- 1 mole di O ₂	□ D - 8,29 atm						
- 1 mole di CO ₂	11 - Dati la seguente reazione e legge cinetica:						
Quale delle seguenti affermazioni è falsa :	2A + B → C						
□ A - O₂ effonde più velocemente di CO₂	$\mathbf{v} = \mathbf{k}[\mathbf{A}][\mathbf{B}]^2$						
☐ B - CO ₂ ha la minima velocità di effusione	Dire quale delle seguenti affermazioni è vera						

□ A - la reazione è del primo ordine rispetto ad A □ B - l'ordine di reazione non è determinato □ C - la velocità di scomparsa di B è doppia rispetto	14 – Calcolare la pressione osmotica a 37 °C di una soluzione acquosa di NaCl 0,9 % in peso. (densità della soluzione = 1,0 g mL $^{-1}$)						
alla velocità di scomparsa di A □ D - la reazione è di ordine 0 rispetto a B	□ A - occorre conoscere il volume di soluzione □ B - 7,83 atm □ C - 3,92 atm						
12 - Indicare la configurazione elettronica esterna (stato fondamentale) per lo ione F^{2+} :	□ D - 15,7 atm						
\Box A - \uparrow \downarrow \uparrow	15 - Per una reazione caratterizzata da: $\Delta H < 0$ e $\Delta S > 0$						
□ B - ↑ ↑ ↓	La variazione di energia libera è □ A - sempre positiva						
□ C - ↑↓ ↑ ↑ ↑	\Box H = semple positiva \Box B = positiva per T > (ΔH/ΔS) \Box C = negativa per T > (ΔH/ΔS)						
\square D - $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	□ D - sempre negativa						
$\overline{13}$ — Indicare il valore atteso dell'angolo tra due legami nelle seguenti molecole o ioni: $ClO_2^-\;;\;NO_2^-\;;\;BeH_2$	16 – Una soluzione acquosa di idrossido di sodio h pH=12. Quante moli di acido cloridrico si devon aggiungere a 250 mL della soluzione di idrossido di sodio per avere pH=10 ?						
□ A - circa 109,5°; circa 120°; 180° □ B - circa 120°; circa 109,5°; circa 120° □ C - circa 120°; circa 120°; circa 120° □ D - circa 109,5°; circa 109,5°; 180°	□ A - dati insufficienti □ B - $1,00 \times 10^{-2}$ □ C - $2,50 \times 10^{-5}$ □ D - $2,48 \times 10^{-3}$						

Costanti utili

Numero di Avogadro, N = 6.022×10^{23} ; Costante dei gas, R = 0.0821 L atm moli $^{-1}$ K $^{-1}$ = 8.314 J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= 2.180×10^{-18} J Velocità della luce c= 3.00×10^{8} m/s Costante di Planck h= 6.63×10^{-34} J·s

Costante di Faraday, F=96500 C/mol

IA	IIA											IIIA	IVA	VA	VIA	VIIA	
Н																	He
1,008																4,00	
Li	Be											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107,9			118,7				131,1