DIPARTIMENTO DI FARMACIA – C.d.L. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA

Problemi - 23 Luglio 2014

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	
1 — Quante moli di acido solforico si formano dalla reazione tra 8 moli di SO_2 , 4 moli di O_2 e 6 moli di H_2O che si combinano secondo la reazione (da bilanciare): $SO_2(g) + O_2(g) + H_2O(g) \rightarrow H_2SO_4(g)$ □ A - 2 moli □ B - 8 moli □ C - 4 moli □ D - 6 moli	$BI_3 ; CO_3^{2-} ; NH_3 ; HCN$ $\squareA - sp^3 ; sp ; sp^3 ; sp^2$ $\squareB - sp^2 , sp^2 ; sp^3 ; sp$ $\squareC - sp^2 ; sp^3 ; sp^2 ; sp^3$ $\squareD - sp^3 ; sp^2 ; sp^2$ $\qquad \qquad $
2 - In una cella elettrolitica contenente cloruro di calcio fuso viene fatta passare una corrente di 250 A per 30 minuti. Qual è il peso di calcio che si ottiene al catodo?	□ A - cianuro, Kps = $3,16 \times 10^{-23}$ □ B - idrossido, Kps = $4,79 \times 10^{-17}$ □ C - carbonato, Kps = $1,45 \times 10^{-11}$ □ D - fosfato, Kps = $9,12 \times 10^{-33}$
□ A - 46,8 g □ B - 187 g □ C - 93,5 g □ D - 6,2 g	7 - Calcolare la costante crioscopica del benzene (C_6H_6) sapendo che il benzene puro congela a 4,90 °C e che una soluzione ottenuta sciogliendo 5,0 g di $C_6H_{12}O_6$ in 100 g di benzene congela a 3,40 °C \square A - 1,80 °C/m
3 - Tra $Cl_2(g)$ e $2Cl(g)$ si instaura il seguente equilibrio: $Cl_2(g) \rightleftharpoons 2Cl(g)$ Una miscela all'equilibrio a 1500 K presenta una pressione parziale di $Cl_2(g)$ pari a 0,10 atm e di $Cl(g)$ pari a 0,015 atm. Quale è il ΔG° per questa reazione a 1500 K? □ A - 29,0 kJ/mol □ B - 76,0 kJ/mol □ C - −76,0 kJ/mol □ D - −29,0 kJ/mol	□ B - 3,60 °C/m □ C - 2,16 °C/m □ D - 5,40 °C/m 8 - L'acido formico, HCOOH, è un acido debole monoprotico con Ka=1,77×10 ⁻⁴ . In 500 mL di soluzione acquosa sono sciolte 0,015 moli di acido formico Calcolare il pH della soluzione. □ A - 7,96 □ B - 6,03 □ C - 11,4
4 - In base ai seguenti dati: $Zn^{2+}(aq) + 2e^{-} -> Zn(s) \qquad E^{\circ} = -0.76 \text{ V}$ $Fe^{2+}(aq) + 2e^{-} -> Fe(s) \qquad E^{\circ} = -0.41 \text{ V}$ $Sn^{2+}(aq) + 2e^{-} -> Sn(s) \qquad E^{\circ} = -0.14 \text{ V}$ $Cu^{2+}(aq) + 2e^{-} -> Cu(s) \qquad E^{\circ} = +0.34 \text{ V}$ Indicare tra le seguenti la reazione più spostata verso i reagenti. $ \Box A - Cu(s) + Zn^{2+}(aq) -> Cu^{2+}(aq) + Zn(s) $ $ \Box B - Sn(s) + Fe^{2+}(aq) -> Sn^{2+}(aq) + Fe(s) $ $ \Box C - Cu(s) + Sn^{2+}(aq) -> Cu^{2+}(aq) + Sn(s) $ $ \Box D - Zn(s) + Fe^{2+}(aq) -> Zn^{2+}(aq) + Fe(s) $ $ \Box D - Indicare lo stato di ibridazione dell'atomo $	□ D - 2,64 9 - Indicare l'ordine complessivo della reazione:
centrale nelle seguenti molecole o ioni:	

	Data una soluzione acquosa 0,8 M di acido calcolare la percentuale in peso di acido nitroso, o che la densità della soluzione è 1,09 g/mL	□ A - □ B - □ C -	HCl MgO KBr
□ A -	5,6 %	□ D -	CO_2
□ B -	10,7 %	14 -	II valore della costante cinetica di reazione:
□ C -	3,4 %		
□ D -	8,0 %	□ A-	è indipendente dalla temperatura
11 -	L'energia di ionizzazione di un elemento è	□ B- □ C- □ D-	decresce con l'aumentare della temperatura aumenta con l'aumentare della temperatura aumenta con l'aumentare della temperatura
□ A-	la tendenza a formare legami ionici	ப D-	solo se la reazione è endotermica
□ B-	l'energia liberata dal processo di cattura		3010 Se la reazione e chaoternica
elettron		15 –	Un recipiente di un litro viene riempito
□ C-	l'energia necessaria per strappare un elettrone	_	tamente da 250 mg di CH ₄ e 250 mg di O ₂ e si
_	cio di valenza		una pressione totale di 0,60 atm. Qual è la
	l'energia liberata dalla dissoluzione di un com-		atura del sistema ?
posto 10	onico in acqua		
12 -	Si consideri la reazione	□ A -	195 K
12 -	CS ₂ (g) + 3 O ₂ (g) \rightarrow CO ₂ (g) +2 SO ₂ (g)	□ B -	223 K
Ouanti	grammi di $CS_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$	□ C -	260 K
	0 litri di SO ₂ a P=2,0 atm e a T= 100°C?	□ D -	312 K
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16	I 'analisi alamantara di un composto famissa la
□ A -	49,5 g	16 -	L'analisi elementare di un composto fornisce le
□ B -	261 g		i percentuali in peso: K 31,9 %; Cl: 28,9 %; O: Di quale dei seguenti composti si tratta?
□ C -	99,0 g	JJ,Z 70.	. Di quale dei seguenti composti si tidita:
□ D -	397 g	□ A -	clorato di potassio
		□ B -	ipoclorito di potassio
13 -	Indicare il solo composto che sciolto in acqua	□ C -	clorito di potassio
rende la	soluzione basica.		Ciorito di Pottassio

Costanti utili

□ D - perclorato di potassio

Numero di Avogadro, N = $6,022\times10^23$; Costante dei gas, R = 0,0821 L atm moli-1 K-1 = 8,314 J moli-1 K-1; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce c= $3,00\times10^8$ m/s Costante di Planck h= $6,63\times10^{-34}$ J·s Costante di Faraday, F=96500 C/mol

IΑ	IIA	IIIA IVA VA VIA VIIA															
Н																He	
1,008																4,00	
Li	Be											В	С	N	O	F	Ne
6,941	9,012												12,01	14,01	16,00	19,00	20,18
Na	Mg		Al Si P S Cl												Cl	Ar	
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93	58,69	63,55	65,39			74,92		79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	87,62				95,94					107,9		114,8	118,7				