□ A - 0,800 V

FACOLTÀ DI FARMACIA – C.d.L. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA SECONDO COMPITO PARZIALE 20 Giugno 2013

COGNOMENO	MEMATRICOLA
Segnare con una crocetta la risposta (una sola) che si ritiene esatta Alle domande a cui non si risponde verrà assegnato un punteggio n	a. Alle risposte esatte verranno assegnati +2 punti mentre a quelle errate −1/2. ullo. Non è consentita la consultazione di libri o appunti.
1 - Una soluzione viene ottenuta sciogliendo 1,01 mg d	
HBr e 0,77 mg di NaOH in acqua fino ad un volume d	i □ C - 0,521 V
4,5 L. Quale è il pH di questa soluzione?	□ D0,282 V
□ A - 7,0	6 – Il fluoruro di magnesio, MgF ₂ , è un sale poco
□ B - 8,2	solubile con solubilità pari a 0,0012 mol/L . Quale è il
□ C - 5,8	Kps del fluoruro di magnesio?
□ D - occorre conoscere il Ka di HBr	
2 – Si bilanci la seguente reazione di ossido-riduzione.	\square A- 6,9× 10 ⁻⁹
$_{\rm MnO_4^-}(aq) + _{\rm S^2-}(aq) + _{\rm H_2O}(l) \rightarrow _{\rm SO_3^2-}(aq) + _{\rm Mn^{2+}}(aq)$	□ B- 1,2× 10 ⁻⁵
+_OH ⁻ (aq)	\square C- 6,9× 10 ⁻⁶
	\Box D- 7,1× 10 ⁻⁷
Quale è il coefficiente di OH ⁻ (aq)?	
<u>A</u> - 6	7 - Quale è la concentrazione molare di una soluzione
□ B - 2	acquosa al 15% in peso di acido nitrico, con densità
C - 3	1,12 g/mL?
□ D - 18	□ A - 9,9 M
	□ B - 0,15 M
3 – In condizioni definite e costanti la generica	
reazione: $A + B $	□ D - 15 M
ha K = 10. Si può dire che:	8 - In un recipiente vuoto a 0 °C si inserisce NOBr(g)
na ix – 10. 51 pub une che.	alla pressione di 5,0 atm. Si stabilisce il seguente
□ A - si deve diminuire la temperatura per	equilibrio:
aumentarne la resa	$2NOBr(g) \stackrel{\bullet}{\blacktriangleleft} Br_2(g) + 2NO(g)$
☐ B - la concentrazione del prodotto è 10 mol/L	Ad equilibrio raggiunto si misura una pressione totale
☐ C - l'equilibrio di reazione è spostato a destra	pari a 5,53 atm. Si determini il ΔG° della reazione.
□ D - la velocità della reazione diretta è 10 volto	
maggiore della velocità della reazione inversa	□ A- −7,40 kJ
	□ B- 6,25 kJ
4 - Data la reazione	□ C6,25 kJ
$CaO(s) + CO_2(g) \stackrel{\longrightarrow}{\longleftarrow} CaCO_3(s)$	□ D- 7,40 kJ
sapendo che ΔH° = -178,3 kJ/mol e che S°(CaCO ₃) =	
92,90 J/K mo1, S°(CaO) = 39,75 J/K mo1, S°(CO ₂) =	9 – La metilammina, CH ₃ NH ₂ , è una base debole
213,7 J/K mol, la temperatura oltre la quale la reazione	con Kb = 4.4×10^{-4} . Si calcoli il pH di una soluzione
non e' piu' spontanea	contenente cloruro di metilammonio, CH ₃ NH ₃ Cl, in
□ A - 837 K	concentrazione 0,25 M.
□ B - 1110K	
□ C - 273 K	□ A - 2,0
□ D - 298 K	□ B - 5,6
- La cognette pile	□ C - 8,4
5 - La seguente pila $Cr(s) Cr^{3+}(0,01 \text{ M}) Sn^{2+}(1 \text{ M}) Sn(s)$	□ D - 12,0
presenta E_{cella} =0,636 Va 25°C. Si determini il potenziale	
di riduzione standard E°(Sn²+/Sn), sapendo che	10 – L idrossido di cobalto(11), Co(OH) ₂ , e un sale
$E^{\circ}(Cr^{3+}/Cr) = -0.744 \text{ V}.$	poco solubile con Kps=1,6× 10 ⁻¹⁵ . Ad una soluzione
(),	contenente ioni Co ²⁺ in concentrazione 10 ⁻³ M viene

aggiunto goccia a goccia NaOH 0,1 M. A quale valore di pH inizierà a precipitare Co(OH)₂?

- □ A 8.1
- □ B 5,9
- □ C 9,1
- □ D 4,9

11 − Si consideri la reazione:

$$A + B \rightarrow C$$

Sapendo che la reazione è:

- i) di ordine 1 complessivo;
- ii) di ordine 0 rispetto ad A;

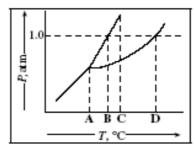
indicare la corretta legge cinetica.

- $\square A v = k [B]$
- \Box B v = k [A] [B]²
- \square C v = k[A]
- \square D v = k[A][B]

12 - La forza di un acido è inversamente proporzionale a quella della sua base coniugata. Perciò si può affermare che:

- □ A l'acido coniugato di una base debole è un acido forte
- \square B la base coniugata di un acido debole è una base
- ☐ C l'acido coniugato di una base debole è uno ione
- $\hfill\Box$ D \hfill più debole è un acido, più forte è la sua base coniugata

13 — Si determini il punto di ebollizione di una soluzione ottenuta sciogliendo 91 g di glicole etilenico, $C_2H_6O_2,\,$ in 500 g di acqua, sapendo che per l'acqua $Keb\!=\!0,\!51$


- □ A 103,0 °C
- □ B 1,5 °C
- □ C 98,5 °C

□ D - 101,5 °C

14 - Quali fra le seguenti molecole possono formare il legame idrogeno:

- □ A tutte
- □ B (a) e (d)
- \square C solo (a)
- □ D (a), (b) e (d)

15 - Quale punto rappresenta il punto normale di fusione della sostanza descritta dal seguente diagramma di fase?

- □ A- A
- **□** B- B
- □ C- C
- □ D- D

16 - L'acido acetico, CH₃COOH, è un acido debole con $Ka=1.8 \times 10^{-5}$. Quale è la percentuale di ionizzazione di una soluzione 0,10 M di acido acetico?

- □ A 0,19 %
- □ B 1,3 %
- □ C 4,4 %
- □ D 3,2 %

Costanti utili

Numero di Avogadro, $N=6,022\times10^{23}$; Costante dei gas, R=0,0821 L atm $moli^{-1}$ $K^{-1}=8,314$ J $moli^{-1}$ K^{-1} ; Costante di Rydberg=2,180×10⁻¹⁸ J Velocità della luce c=3,00×10⁸ m/s Costante di Planck h=6,63×10⁻³⁴ J·s

Costante di Faraday, F=96500 C/mol

IIA IΑ IIIA IVA VA VIA VIIA Η He 1,008 4,00 В C N F Li Be O Ne 6,941 9,012 10,81 12,01 | 14,01 | 16,00 | 19,00 | 20,18 Na Mg Al Si P S Cl Ar 22,99 24,30 26,98 28,09 30,97 32,07 35,45 39.95 Ti Zn K Ca Sc Cr Mn Fe Co Cu Ga Ge As Se Br Kr 47.90 39.10 40.08 52.00 54.94 55.85 58.93 63,55 65,39 79,90 Rb Sr Y Zr Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Ι Xe 95,94 118,7 127,6