DIPARTIMENTO DI FARMACIA – C.d.S. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA COMPITO SCRITTO - 15 Aprile 2014

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo. I	
1 - Un ossido di manganese contiene 1,72 g di manganese per grammo di ossigeno. Quale è la formula empirica di tale composto? \square A- Mn_2O_7 \square B- MnO_2 \square C- Mn_2O_3 \square D- MnO_3	5 - Quante moli di atomi di ossigeno sono presenti in 160 g di acido solforoso? □ A - 1,63 □ B - 1,95 □ C - 6,53 □ D - 5,85
2 — Una soluzione contiene NaCl a concentrazione $1,0\times10^{-6}$ M. Se a 1,0 litri di tale soluzione sono aggiunti 0,012 grammi di AgNO ₃ , cosa succede? AgNO ₃ è un sale solubile mentre AgCl è un sale poco solubile con Kps= $1,8\times10^{-10}$	6 − Facendo reagire 32 g di idrogeno con 320 g di ossigeno, quante moli di acqua si ottengono? □ A − 10 □ B − 32 □ C − 20
□ A - non si ha precipitazione □ B - precipita AgCl □ C - precipita NaCl □ D - i dati non sono sufficienti	□ D - 16 7 - A 1200 K in un recipiente vuoto viene inserito $SO_3(g)$ alla pressione di 0,80 atm. Si stabilisce il seguente equilibrio: $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$
3 – Mettere in ordine di pH decrescente le seguenti soluzioni acquose, sapendo che l'ammoniaca è una base debole con Kb=1,8×10 ⁻⁵ : (a) Cloruro di sodio 0,1 M (b) Ammoniaca 0,1 M (c) Cloruro di ammonio 0,1 M (d) Idrossido di sodio 0,1 M	Ad equilibrio raggiunto si misura una pressione di SO ₂ pari a 0,70 atm . Quale è il Kp di questo equilibrio? □ A - 2,2×10 ⁻² □ B - 0,33 □ C - 2,70 □ D - 17
 □ A - pH(c)>pH(d)>pH(b)>pH(a) □ B - pH(d)>pH(a)>pH(c)>pH(b) □ C - pH(d)>pH(b)>pH(a)>pH(c) □ D - pH(c)>pH(b)>pH(a)>pH(d) 	8 - Una soluzione di ammoniaca ha una concentrazione 3,0 M. Quanti millilitri di questa soluzione occorre diluire con acqua per avere 400 mL di soluzione con pH=11,55? Kb(NH ₃)=1,8×10 ⁻⁵ A- 140 mL
4 - "L'effusione dei gas attraverso fori sottili è regolata dalla legge di Graham, che stabilisce che la velocità di effusione (diffusione) ad una data temperatura dipende solo dalla massa molecolare (p.M.), ed è inversamente proporzionale alla sua radice quadrata". Quale delle seguenti affermazioni NON può essere dedotta dalla lettura del brano precedente?	□ B- 700 mL □ C- 220 mL □ D- 93 mL 9 - A 25°C la tensione di vapore del benzene puro è 0,125 atm. Se 0,6 moli di naftalene vengono sciolte in 200 g di benzene, C ₆ H ₆ , quale è la nuova tensione di vapore del benzene?
□ A - La velocità di effusione è dipendente dalla temperatura □ B - A parità di temperatura i gas più leggeri effondono più lentamente □ C - La velocità di effusione è inversamente	vapore del benzene? □ A - la tensione di vapore resta invariata □ B - 0,149 atm □ C - 0,024 atm □ D - 0,101 atm
proporzionale alla radice quadrata del p.M. □ D - A parità di temperatura un gas di p.M. 25 u.m.a. effonde con velocità doppia rispetto ad un gas di p.M. 100 u.m.a.	10 − L'acqua liquida è costituita da molecole □ A - polari □ B - completamente dissociate

	C -	tenute	assieme	da	forze	di	van	der	Waal
_	u	iciiuic	assicilic	uu	IUILC	uı	v all	ucı	v v uui

 \square D - caratterizzate da un angolo di legame di 120 $^\circ$

11 – La reazione

 $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

presenta $\Delta H = -906,2 \text{ kJ}.$

Sapendo che $\Delta H_f^{\circ}(NH_3) = -45,9 \text{ kJ} \cdot \text{mol}^{-1} \text{ e}$

 $\Delta H_f^{\circ}(H_2O) = -241.8 \text{ kJ} \cdot \text{mol}^{-1}$, calcolare ΔH_f° (NO).

□ A - 90,25 kJ·mol⁻¹

□ B - 361 kJ·mol⁻¹

□ C - -361 kJ·mol⁻¹

□ D - -90,25 kJ·mol⁻¹

12 – L'acido nitroso, HNO₂, è un acido debole. Se si sciolgono 0,1 moli di nitrito di sodio, NaNO₂, ad un litro d'acqua quale delle seguenti affermazioni è **falsa**?

- ☐ A la concentrazione di ioni Na⁺ diventa 0,1 M
- ☐ B- la concentrazione di ioni OH aumenta dopo l'aggiunta di NaNO2
- □ C la concentrazione di HNO₂ diminuisce dopo l'aggiunta di NaNO₂
- ☐ D la soluzione diventa basica

13- Il cloro gassoso può essere preparato facendo reagire HCl con MnO₂, tramite la reazione:

 $MnO_2(s) + 4 HCl(aq) \rightarrow Cl_2(g) + MnCl_2(aq) + 2H_2O(l)$ Si calcoli il volume di cloro prodotto alla pressione di 1,5 atm e a 20°C dalla reazione di 500 mL di una soluzione di HCl 0,5 M.

- □ A 4,00 L
- □ B 1,00 L
- □ C 8,00 L

□ D - 0,24 L

14 - Determinare l'ibridizzazione degli atomi di carbonio nella molecola con la seguente struttura di Lewis

- \Box A $C_1 = sp^3$; $C_2 = sp$; $C_3 = sp$
- \square B $C_1 = sp^2$; $C_2 = sp^3$; $C_3 = sp^2$
- \Box C $C_1 = sp^2$; $C_2 = sp^3$; $C_3 = sp$
- \Box D $C_1 = sp^3$; $C_2 = sp$; $C_3 = sp^2$

15 - Si bilanci la seguente ossidoriduzione in ambiente acido:

 $_Sn^{2+}(aq) + _MnO_4^-(aq) + _H^+(aq) \rightarrow _Sn^{4+}(aq) +$

 $Mn^{2+}(aq) + H_2O(l)$

Quale è il coefficiente di H₂O?

- □ A- 2
- **□** B- 5
- □ C- 8
- □ D- 16

16 – Per quale dei seguenti tipi di solido vi aspettate una conducibilità elettrica maggiore?

- ☐ A solido ionico
- ☐ B solido molecolare
- ☐ C solido metallico
- □ D solido covalente

Costanti utili

Numero di Avogadro, $N=6,022\times10^{23}$; Costante dei gas, R=0,0821 L atm $moli^{-1}$ $K^{-1}=8,314$ J $moli^{-1}$ K^{-1} ; Costante di Rydberg= $2,180\times10^{-18}$ J Velocità della luce $c=3,00\times10^{8}$ m/s Costante di Planck $h=6,63\times10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

IA IIA IIIA IVA VA VIA VIIA

Н																	He
1,008																	4,00
Li	Be											В	С	N	О	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93	58,69	63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107.9			118.7				