DIPARTIMENTO DI FARMACIA CORSO DI CHIMICA GENERALE ED INORGANICA

10 Settembre 2013

COGNOME	NOME
Segnare con una crocetta la risposta (una sola) che si ritiene esatta. Alle Alle domande a cui non si risponde verrà assegnato un punteggio nullo.	
1 – Quale delle seguenti affermazioni riguardo lo ione	6 - Calcolare il ΔH° della seguente reazione:
cloruro è <u>falsa</u> ?	SU(O(1) + P(O(1)) > AU(P(O(1))
 □ A- ha configurazione elettronica [Ne] 3s² 3p⁶ □ B- è paramagnetico □ C- è molto stabile □ D- ha la stessa configurazione elettronica dell'atomo di Ar 	$\begin{aligned} 6H_2O(l) + P_4O_{10}(s) &> 4 \ H_3PO_4(l) \\ \text{Sulla base dei seguenti dati termochimici:} \\ H_2(g) + 1/2O_2(g) &\longrightarrow H_2O(l) \qquad \Delta H^\circ = -286 \ \text{kJ/mol} \\ 4P(s) + 5O_2(g) &\longrightarrow P_4O_{10}(s) \qquad \Delta H^\circ = -2984 \ \text{kJ/mol} \\ 3/2H_2(g) + P(s) + 2O_2(g) &\longrightarrow H_3PO_4(l) \qquad \Delta H^\circ = -1279 \ \text{kJ/mol} \end{aligned}$
2 – L'analisi elementare di un composto fornisce le	□ A416 kJ/mol
seguenti percentuali in peso: K 28,2 %; Cl: 25,6 %; O:	□ B - −1452 kJ/mol
46,2 %. Di quale dei seguenti composti si tratta?	□ C - 5979 kJ/mol
	□ D - 185 kJ/mol
☐ A - clorato di potassio	7 7 1 1 1 1 2 2 2 111 1 2
□ B - ipoclorito di potassio	7 - Indicare quale dei seguenti metalli ha il maggiore carattere riducente:
☐ C - clorito di potassio ☐ D - perclorato di potassio	Carattere fiducente.
□ D - perclorato di potassio	\Box A - Fe (E° _{Fe2+/Fe} = -0,45 V)
3 - Da 135 ml di una soluzione di solfato di potassio	\square B - Zn (E° _{Zn2+/Zn} = -0,76 V)
0,188 M si lascia evaporare acqua finché il volume	\Box C - Cd (E° _{Cd2+/Cd} = -0,40 V)
diventa 60,0 ml. Quale è la molarità della soluzione	\Box D - Al (E° _{Al3+/Al} = -1,66 V)
risultante?	
	8 – Una certa quantità di gas occupa un volume di 3,00
□ A - 0,423 M	L a 0°C e 1 atm. Quando tale gas viene espanso a 0,70 atm e raffreddato a -18 °C, il volume finale è pari a:
□ B - 0,634 M	atin e fameduato a -10°C, ii volume finale e pari a.
□ C - 0,242 M □ D - 0,299 M	□ A - 4,00 L
□ D - 0,299 M	□ B - 5,97 L
4 - Si consideri la reazione (da bilanciare)	□ C - 5,00 L
$CS_2(g) + O_2(g) \rightarrow CO_2(g) + SO_2(g)$	□ D - 9,93 L
Quanti grammi di CS ₂ (g) devono reagire per avere 20	
litri di SO_2 a P=4,0 atm e a T= 100°C?	9 – Calcolare il punto di fusione di una soluzione
П А 100 ~	acquosa di nitrato di alluminio 10,0% in peso. (La
□ A - 198 g	costante crioscopica dell'acqua vale 1,86 °C/m)
□ B - 261 g □ C - 99,0 g	□ A - 3,88 °C
□ D - 397 g	□ B3,88 °C
ш D - 337 g	□ C - 0,969 °C
5 - HCOOH è un acido debole monoprotico con	□ D0,969 °C
Ka=1,77×10 ⁻⁴ . In un litro di soluzione acquosa sono	10. Indicare Parding complexity July 2007
sciolte 0,01 moli di HCOONa. Calcolare il pH della soluzione.	10 - Indicare l'ordine complessivo della reazione:
SOTULIOTIC.	$H_2(g)+I_2(g) \Rightarrow 2HI(g)$
□ A - 7,88	(5)(5)
□ B - 6,12	sulla base dei seguenti dati sperimentali:
□ C - 5,75	- •
□ D ₋ 8.25	

$[H_2]_{\underline{\hspace{1cm}}}$	$[I_2]$	V
1,5 M	1,5M	$3,60\times10^3 \text{ M s}^{-1}$
1,5 M	3,0M	$7,20\times10^3 \text{ M s}^{-1}$
3,0 M	1,5M	$1,44\times10^4~{\rm M~s^{-1}}$
□ A -	1	
□ B -	0	
□ C -	2	
□ D -	3	

11 - Una pila viene costruita con due elettrodi ad idrogeno ($P_{\rm H2}$ = 1,00 atm in entrambi) immersi uno in una soluzione di acido cloridrico 1,0 M e l'altro in una soluzione di idrossido di potassio 0,10 M. Determinare la forza elettromotrice della pila a $25^{\circ}\text{C}.$

□ A - 0,06 V □ B - 0,77 V □ C - 0,00 V □ D - 0,59 V

12 - Tra $Cl_2(g)$ e 2Cl(g) si instaura il seguente equilibrio:

 $Cl_2(g) \rightleftharpoons 2Cl(g)$

Una miscela all'equilibrio a 2000 K presenta una pressione parziale di $\text{Cl}_2(g)$ pari a 0,10 atm e di Cl(g) pari a 0,132 atm. Quale è il ΔG° per questa reazione a 2000 K?

□ A - -29,0 kJ/mol □ B - 126,5 kJ/mol □ C - -126,5 kJ/mol □ D - 29,0 kJ/mol

13 - Sapendo che la sua solubilità in acqua è 7.05×10^{-6} M, calcolare il Kps di Pb(OH)₂ .

- \square A 1,8× 10⁻⁷ \square B 1,4× 10⁻¹⁵
- \square C 2,2× 10⁻²⁰ \square D 5,2× 10⁻¹¹
- 14 Quale delle seguenti affermazioni è vera per la molecola $\mathrm{NO_3}^-$?
- \square A Ha geometria trigonale piramidale con l'atomo di azoto ibridato sp³
- \square B Ha geometria trigonale planare con l'atomo di azoto ibridato sp²
- \square C Ha geometria piegata con l'atomo di azoto ibridato sp²
- □ D Ha geometria tetraedrica con l'atomo di azoto ibridato sp3

15 – Indicare, tra i seguenti composti, quello che **non** può formare legami a idrogeno con l'acqua

- $\square A NH_3$
- □B- HF
- □ C H₂O₂
- □ D CH₄

16 - Si consideri la reazione:

 $2N_2H_4(l)+N_2O_4(l) \rightarrow 3N_2(g)+4H_2O(g)$ $\Delta H = -1078 \text{ kJ}$

Calcolare la quantità di calore liberato da questa reazione a pressione costante quando vengono formati $140 \ g$ di $N_2(g)$.

- □ A 1078 kJ
- □ B 1797 kJ
- □ C 3234 kJ
- □ D 5390 kJ

Costanti utili

Numero di Avogadro, $N = 6,022 \times 10^{23}$; Costante dei gas, R = 0,0821 L atm moli $^{-1}$ K $^{-1} = 8,314$ J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180 \times 10^{-18}$ J Velocità della luce $c=3,00 \times 10^{8}$ m/s Costante di Planck $h=6,63 \times 10^{-34}$ J·s

Costante di Faraday, F=96500 C/mol

IΑ IIA IIIA IVA VA VIA VIIA Η He 1,008 4,00 C 0 F Li Be В N Ne 6,941 9,012 10,81 | 12,01 | 14,01 | 16,00 | 19,00 | 20,18 Al P Cl Ar Na Mg Si S 22,99 24,30 26,98 | 28,09 | 30,97 | 32,07 | 35,45 | 39,95 Zn K Ca Ti Cr Mn Fe Co Ni Cu As Se Br Kr Ge 39,10 40,08 47.90 52,00 54,94 55,85 58,93 58,69 63,55 65,39 74,92 79,90 Rb Sr Zr Mo Tc Ru Rh Pd Ag CdIn Sn Sb Te Ι Xe 87,62 95,94 107,9 114,8 118,7