DIPARTIMENTO DI FARMACIA CORSO DI CHIMICA GENERALE ED INORGANICA

Problemi – 03/02/2015

COGNOME	NOME	MAT
Segnare con una crocetta la risposta (una sola) che si ritic Alle domande a cui non si risponde verrà assegnato un pur	ene esatta. Alle risposte nteggio nullo. Non è con	esatte verranno assegnati +2 punti mentre a quelle errate –1/2 sentita la consultazione di libri o appunti.
1 - Indicare quali fra le seguenti sostanze p		le delle seguenti affermazioni è falsa:
far variare il pH dell'acqua pura:		
a) NaCl; b) HCl; c) NaNO ₂ ; d) N ₂		- O ₂ effonde più velocemente di CO ₂
.,, ., ., ., ., ., ., ., ., ., ., .		- 1
□ A – tutte		
\square B – solo b)		
\square C – a) e d)		
$\square D - b e c$	7 - 0	Calcolare la forza elettromotrice della seguente pila:
, ,		$ Fe^{2+}(aq) (0.015 \text{ M}) Ag^{+}(aq) (0.015 \text{ M}) Ag(s) $
2 – Calcolare la solubilità del carbon		nodo = -0.44 V; E°catodo = 0.80 V
$argento(I)$ (Kps = 8.13×10^{-12}) in una soluzione	acquosa	
0,05 M di carbonato di sodio.	\square A	- 1,19 V
		3 - 1,14 V
\Box A - 2,0×10 ⁻⁹		C - 1,16 V
\Box B - 6,4×10 ⁻⁶		0 - 1,23 V
$\Box \text{ C} - 5.0 \times 10^{-2}$		
\Box D - 5,0×10 ⁻¹²	8 -	Calcolare il calore assorbito dalla dissoluzione
_ 5		0,0 g di nitrato di ammonio, sapendo che la dissolu-
3 – Bilanciare la seguente reazione di	zion	e di una mole assorbe 20,9 kJ.
ossidoriduzione in ambiente acido:	<u></u>	
$a C_2 O_4^{2-} + b IO_3^{-} \rightarrow c CO_3^{2-} + d I^{-}$		
		,
\square A - $a = 3$; $b = 1$; $c = 3$; $d = 1$;		
\square B - $a = 3$; $b = 1$; $c = 6$; $d = 1$;		0 - 20,9 kJ
\Box C - $a = 1; b = 1; c = 2; d = 1;$		10.0 - 1.0 1 1 1.
\square D - $a = 1$; $b = 3$; $c = 1$; $d = 6$;	9 – 250	- 0,0 8 10 - 10 - 10 - 10 - 10 - 10 - 1
	otto	mL di acqua. Calcolare il pH della soluzione nuta, sapendo che l'acido fluoridrico è debole con
4 - Quali delle seguenti molecole o ioni	possono	$=1.0\times10^{-4}$.
essere rappresentate da più formule di risonanza	. Ka-	-1,0×10 .
(a) HCN; (b) CO_2 ; (c) O_3 ; (d) NO_2^-		4 - 5,01
		,
\square A - solo (d)		C - 2,01
\square B - (c) e (d)		,
C - tutte		12,0
\square D - (a) e (d)	10 -	Si consideri in seguente equilibrio:
7 O. 1 1 11 11 11 11 11 11 11 11 11 11 11 1		$C(s) + H_2O(g) = CO(g) + H_2(g)$
5 – Calcolare il pH di una soluzione p		in reattore di 200 L e a 800 °C vengono poste a
aggiungendo 1 mole di idrossido di sodio ad un	i iiuo ui	ire 36 moli di carbonio e 36 moli di acqua
soluzione acquosa contenente 2 moli acido flu (pKa = 4).		colare la pressione parziale di idrogeno ad equilibrio
(pKa – 4).		giunto, sapendo che a 800 °C Kp=2,85.
□ A - 14		
□ B - 4		
\Box C - 10		
$\Box D - 2$		
6 – Data una miscela di gas composta da:	D	0 - 8,29 atm
- 1 mole di He		
- 1 mole di O ₂	11 -	
- 1 mole di CO ₂		$A + 2B \rightarrow C$

ha costante cinetica di 1.5×10^{-4} ed è di ordine 1 sia ri-						
spetto ad A che rispetto a B. Calcolare la velocità inizia-						
le di reazione per una miscela in cui [A]=0,5 M e	14 – Calcolare la pressione osmotica di una soluzione					
$[B]=2\times[A].$	acquosa di nitrato di alluminio 0,055 M a 310 K.					
\Box A - 3,0×10 ⁻⁴						
\Box B - 6,0×10 ⁻⁴	\square A - 1,40 atm					
\Box C - 1,5×10 ⁻⁴	□ B - 1,00 atm					
\Box D - 7,5×10 ⁻⁵	□ C - 5,60 atm					
	□ D - 0,167 atm					
12 - Indicare la rappresentazione simbolica corretta						
dei tre isotopi del magnesio, che possono avere 12, 13 o	15 - Per una reazione caratterizzata da:					
14 neutroni:	ΔH <0 e ΔS >0					
	La variazione di energia libera è					
$\frac{^{12}}{^{24}}$ Mg; $\frac{^{12}}{^{25}}$ Mg; $\frac{^{12}}{^{26}}$ Mg						
□ A -	□ A - sempre positiva					
\Box B - $^{26}_{14}$ Mg; $^{25}_{13}$ Mg; $^{24}_{12}$ Mg	\square B - positiva per T > (\triangle H/ \triangle S)					
	\square C - negativa per T > $(\Delta H/\Delta S)$					
\Box C - $^{36}_{12}$ Mg; $^{37}_{12}$ Mg; $^{38}_{12}$ Mg	☐ D - sempre negativa					
²⁴ Mg; ²⁵ Mg; ²⁶ Mg						
□ D - 12 Mg; 12 Mg; 12 Mg	16 – Una soluzione acquosa di idrossido di sodio ha					
	pH=12. Quante moli di acido cloridrico si devono					
13 – Indicare il valore atteso dell'angolo tra due	aggiungere a 250 mL della soluzione di idrossido di					
legami nelle seguenti molecole o ioni:	sodio per avere pH=10 ?					
ClO_2^- ; NO_2^- ; BeH_2						
T + 100.70 : 1000 1000	□ A - dati insufficienti					
□ A - circa 109,5°; circa 120°; 180°	$\square B - 1,00 \times 10^{-2}$					
□ B - circa 120°; circa 109,5°; circa 120°	$\square \text{ C} - 2,50 \times 10^{-5}$					
□ C - circa 120°; circa 120°; circa 120°	\Box D - 2,48×10 ⁻³					
☐ D - circa 109,5°; circa 109,5°; 180°						

Costanti utili

Numero di Avogadro, $N = 6,022 \times 10^{23}$; Costante dei gas, R = 0,0821 L atm moli $^{-1}$ K $^{-1} = 8,314$ J moli $^{-1}$ K $^{-1}$; Costante di Rydberg= $2,180 \times 10^{-18}$ J Velocità della luce c= $3,00 \times 10^{8}$ m/s Costante di Planck h= $6,63 \times 10^{-34}$ J·s Costante di Faraday, F=96500 C/mol

IΑ	IIA											IIIA	IVA	VA	VIA	VIIA	
Н																	He
1,008																	4,00
Li	Be											В	C	N	O	F	Ne
6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18
Na	Mg											Al	Si	P	S	Cl	Ar
22,99	24,30											26,98	28,09	30,97	32,07	35,45	39,95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08		47.90		52,00	54,94	55,85	58,93		63,55	65,39					79,90	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
										107,9			118,7				131,1