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Machine Learning

Machine learning techniques can be divided into two foremost types:

Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw
inferences from data sets consisting of input data without labeled responses (i.e. clustering
algorithms)

Supervised: used when you want to predict or explain the data you possess. A supervised
algorithm takes a known set of input data and known responses to the data (output) and trains a
2
Reinforcement Learning: the algorithms learn to react to an environment on their own. An
agent is in a situation of trial and error, where the consequences of its actions have an impact on

the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of

its behavior, with the idea that, in the future, it will prefer optimal actions (i.e. our intelligent

cache system)

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni, Daniele
Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake for High Energy
Physics Analysis", Journal of Grid Computing, DOI: 10.1007/s10723-023-09664-z (2023)
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Neural Network abd CNN

Deep learning is a subset of machine learning that
uses artificial neural networks with multiple layers
to extract higher-level features from raw input
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N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients

Rate coefficients for vibrational energy transfer are calculated forjcollisions
between molecular nitrogen and hydrogen in a wide range of temperature
and of initial vibrational states

o The calculations were performed by a mixed quantum-classical

ML Goal Predict rate coefficients for vibrational energy transfer processes
involving specific initial vibrational states, which are computationall
expensive to calculate directly.

Qizhen Hong, Loriano Storchi, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun,

Cecilia Coletti, "Inelastic N2+H2 collisions and quantum-classical rate coefficients:

large datasets and machine learning predictions" The European Physical Journal D, DOI:
10.1140/epjd/s10053-023-00688-4 (2023




N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients

We used an tested two possible approaches:
Neuronal Network (NN)
Gaussian Process Regression (GPR):

Non-parametric, Bayesian approach to regression.
Flexible models that work well on small datasets

Start from the assumption that f(x) and f(y) are
normally distributed with some meand and some
covariance being x known points (training) and y

Hyperparameters of the kernel function are
learned from the data.




N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients

Na(v) + H2(0) — Ny(v — Aw)
+H,(0), Av=1,2,3.

log. (k) is the label

We want to test the performances of
ttwo models NN and GPR




N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients

dense_input | input:

[(None, 2)]

InputLayer | output: | [(None, 2)]
y
dense | input: | (None, 2)
Dense | output: | (None, 2)
y
dense_1 | input: (None, 2)
Dense | output: | (None, 32)
dense 2 | input: | (None, 32)
Dense | output: | (None, 64)
dense 3 | input: (None, 64)
Dense | output: | (None, 128)
dense 4 | input: | (None, 128)
Dense | output: | (None, 32)
dense 5 | input: | (None, 32)
Dense | output: | (None, 1)

GPR using Matern Kernel




N.-H. Inelastic Collisions mixed quantum-classical rate coefficients
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N.-H. Inelastic Collisions mixed quantum-classical rate coefficients
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he test set MSE values for the two
models obtained by removing an
increasing number of systematically

points, corresponding to specific v values,
from the training set, i.e., Set1, removed v
=[2; 4; 6; 8; 10; 14; 18; 22; 26; 30;

35], Set2, removed v=[1; 3; 5; 7; 9; 12;
16; 20; 24; 28; 32; 40], Set3, removed v =
[2; 3; 5; 6; 8;9; 12; 14; 18; 20; 24; 26; 30;
32], Set4, removed v = [1; 2; 4; 5; 1; 8; 10;
12;16; 18; 22; 24; 28; 30; 35; 40]. The
three panels correspond to processes (9)




N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients

Blue [points are the predicted
ones, whlle the green points




N.-H. Inelastic Gollisions mixed quantum-classical rate coefficients
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Machine Learning and the GRID Force-Fields

GRID program: a computational procedure for determining energetically favourable binding sites on

molecules for functional groups of known structure through the use of PROBES.
The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and

Atomlype is assigned) . Its interaction energy with the target molecule is computed by an empirical energ

E . =X[E |+X[E,]+XE]+[S]

E, = Lennard-Jones potential E,,.= hydrogen bonding interaction energy E
electrostatic function S= entropic term

/
/




Machine Learning and the GRID Force-Fields

We huild PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term E  that is the product of three terms terms:

E_based on the distance between the target and the probe given in kcal/mol

The other two, both ranging in the interval 0-1. They are dimensionless functions of the angles t and p made by the hydrogen bond
(HB) at the target and the probe atoms respectivel

Er assumes relative values in case of interaction with a HB acceptor or dono
Eng = E, *E+*E D- complementary probe and is parametrized by two values: Emin is the strongest
hydrogen-bond attraction energy at the optimum position (Emin), and half

of the straight-line distance between donor and acceptor atom pairs which
min — demin corresponds to the strongest hydrogen-bond attraction energy (Rmin)

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational
Chemistry, DOI: 10.1002/jcc.26737 (2021)



Machine Learning and the GRID Force-Fields

The dataset is made of 66463 drug-like molecules

We used GAMESS-US B3LYP/SVP (necessity of having a versatile basis set and method) to

compute the Electrostatic Potential (EP) for each atom

EP is converted to the so called dEmin value using linear equation derived so that for each AT

all the resulting dEmin values always fall within an acceptable range

dEmmBH = MpH EP + dBH- 22 equations, each one fo
each Atomlype

. The dEmin is our label
dEminay = —mMay™*EP — qay.



Machine Learning and the GRID Force-Fields

N:= sp2 N with lone pair (HB acceptor) N1 Neutral flat NH eg amide (HB donor)

0.04

N
o

&
o

dEmin (kcal/mol)
dEmin (kcal/mol)

551 6.0

£.04

-18.40 -18.35 -18.30 -18.25 18.30 -18.25
EP (A.U.) EP (A.U.)

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and -4.0 for N1 atom
types. dEmin, dynamic Emin




Machine Learning and the GRID Force-Fields

Does chemically sound to use the dEmin in the the E,; term ?

We decided to test the correlation of
the proposed dEmin to those
experimental hydrogen-bonding (HB)
properties.

dEmin versus H-bond basicity scale
for the Kenny dataset (279 atoms, R

-4
dEmin (kcal/mol)



Machine Learning and the GRID Force-Fields

We have a good label, now we need to select the feature (descriptor) to use in the model

The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances

N 3H 122
C.3 326 11 C.3 326
C.3 629 10 C.3 629
N.3 ar 1016

C.ar+ 1250
NPYM 1706 6 NPYM 1706
C.ar+ 1856 1 C.ar+ 1856




Machine Learning and the GRID Force-Fields

We build PLS models, each model is related to a specific AT, to improve the quality of the

Hydrogen-Bonding term [




Machine Learning and the GRID Force-Fields

Using this approach, 22 PLS models were built relating atomic environment to dEmin for
the HB GRID atom types (some of the models results are reported validated using

H-bond SDEC SDEP

AT Description type Atoms LV R? @ (kcal/Mol)  (kcal/Mol)
N: sp3 (tertiary) nitrogen, accepting one H-bond A 6954 9 0.92 0.88 0.56 041
N1: sp3 (secondary) nitrogen, donating one hydrogen and A 3941 8 0.91 0.84 0.24 049

accepting ohe H-tiond D 4776 7 096 092 030 053
N2: sp3 (primary)nitrogen, donating up to two hydrogen and A 3618 8 0.84 0.71 0.26 0.38

aeceping one Heoond D 4895 7 095 092 030 041
ON oxygen of nitro or nitroso group, accepting up to two H-bond A 4907 8 0.82 0.69 0.26 0.38
N:= sp2 (aromatic) nitrogen, accepting one H-bond A 27,140 12 091 0.89 0.35 047
N:: sp2 nitrogen with two lone pairs and one double bond A 472 4 0.89 0.59 0.23 0.12
N:# sp nitrogen A 15,798 10 072 066 029 0.32



Machine Learning and the GRID Force-Fields

More chemically aware force-field

he energy values of the isocontour surfaces
chosen for H-bond donating probe (“N1,” probe)
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DeepGRID
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DATASET AND LABEL




Test Case: Blood Brain Barrier Permeation

A model exists within VolSurf (PLS) — we have a baseline

We can investigate a number of modelling approaches:

DeepGRID, Random Forest & PLS (using VS descriptors)

There are some larger publicly available datasets

eg. LightBBB (7000 cpds)

. \VolSur
f



Dataset Preparation

VS-IgBB-332 dataset In-house dataset used to build the original VolSurf model
Light-lgBB-416 dataset A subset of the 2105 dataset which had experimental logBB

Light-BBclass-2105 dataset - Classification Generated from the Shaker/Parakkal
After filtering by InChl to remove duplicates 4285 compounds remained (-40%!)
Given that such a large proportion of the dataset contained duplicates we filtered

also by Druglikeness to give 3464 compounds

10% of the dataset removed due to duplicate InChl strings or diastereoisomerism



Dataset Splitting

For each dataset, subsets of compounds were randomly selected:
Training Set: 60% - used to train the models
Validation Set: 20% - used to select the best hyperparameters or

Test Set: 20% - used as a final performance check

The same sets were used for each model







DeepGRID Approach

GRAID descriptors calculated (normalised GRID MIFs, 8 channels)
Descriptors fed into a Deep Learning CNN model

Note: in this case the training and validation sets were mixed so that different viewpoints of the
same molecule were in training/validation, to allow the model to learn from the viewpoints




DeepGRID is alignment independent

Each molecule conformation centred within a grid cage 0,0,0 to 30,30,30
21 Viewpoints’ generated by rotating the molecule around each axis







DeepGRID Model

3 convolutional layers, drop out and max pooling
extracting features and reducing the dimensionality




OTHER MODELS AND FEATURES




DeepGRID Hyperparameters optimization

Volsurf Descriptors

Probes’
Descripeors Descnipeion
H2 DRY 0
v X Molecular volume
S Molecular surface
POI Palanzabiity
MW Molar mass
HH1-HHY Hwdrogen bonding
A Amphiphulic moment
BV Best wolumes
W1-W§ Hydrophilic regions
1D1-108 Hydrophobec integy moment
Cwl.0ws Capacity factor
Di-D8 Hydrophobee regions
e Critical padsing
LOG P nganthm of partition cocthcent
Muffusiviey

IH-

* Blanrk, other ways of calocfation, For deatails, see reference Crucian: of al. (2000



Random Forest Approach

Each molecule conformation was used to




Partial Least Squares Approach

k
Ynj = Z Bixni + 8nj
i=0

It is a linear relation but instead of
the pure X variables we are using LV
(Latent Variables) similar to PCR

(Principal Components Regression)
but LV are build to “better correlate”
also Y variable respect to PC
(Principal Components),

Each molecule conformation was used to

The VS model descriptors were removed (eg.

A PLS model was generated and the number
of components has been obtained looking for
the best RMSE in the validation set while
mcreasmg the number of LV (Latente










VS-1gBB-332 Dataset
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Light-lgBB-416 dataset is more diverse
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More diverse — more difficult— all approaches give less accurate
0.00
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DeepGRID gives a robust model

8 TrainMSE
@ ValidMSE
TestMSE

. ,
2000 Y-Scragling 50, 80% 100%




Regression — Classification

The regression models for described can also be used for classification




Classification: VS-IgBB-332 model

At a minimal threshold of 0.1, all models predict with >90% accuracy
The RF model is slightly better
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Classification: Light-lgBB-416 model

At minimal threshold of 0.1, all models predict with ~90% accurac
All models are fairly equal

1.00

o

o

o

0.90
0.8
lD epGRID
0.7 IPLS
mVS3IgBB
0.6
05

0.1 0.15
Threshoeld for Classificatio

o



Classification Models - Light-lgBB-2105 dataset

ew classification models were built using DeepGRID and Random
orest (with hyperparameter optimization)
nitial attempts with DeepGRID kept stalling during learning

otentially due to data imbalance?
The BBB- cpds were artificially augmented to bring the balance to

successful learnin



DeepGRID Classification Models - Light-lgBB-2105

AUC Full Set: 0.97 Test Set: 0.87

DeepGRID - DeepGRID Train+Validation DeepGRID Test
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RF Classification Models - Light-lgBB-2105 dataset

AUC Full Set: 0.95 Test Set: 0.84

ROC RF ROC RF Train+Validation ROC RF Test
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DeepGRID model the best for classification

All models classification performance (ROC-AUC) on the 2105 dataset
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DeepGRID: mixing VS descriptors and MIF

Clearance mechanism classification fro drugs two classes :

Metabolic Clearance: This is the most complex mechanism,
involving the biotransformation of drugs into more hydrophilic

metabolites to facilitate excretion.(643 compounds)
Renal Clearance: This mechanism involves the direct excretion of
drugs in the urine, typically for small, hydrophilic compounds. (329

| am using augmentation techniques




DeepGRID: mixing VS descriptors and MIF

Y
input: | (None, 21, 21, 21, 24)
T L e [T RETE TR Two model are cocananated :
| Model 1 |s the CNN model
input: | (None, 21,21, 21,24) | |. input: | [(None, 44)]
flatten: Flatten input_2: InputLayer
output: (None, 222264) output: | [(None, 44)]

Sy gt

input: | [(None, 222264), (None, 44)]
output: (None, 222308)

concatenate: Concatenate

input: | (None, 222308)
output: |  (None, 16)

dense: Dense

input: | (None, 16)

batch normalization 3: BatchNormalization




DeepGRID: mixing VS descriptors and MIF

Layer Arrangement in a CNN

VS descriptors are appended together with the output of
the Convolutional layers in the flatten layer




DeepGRID: mixing VS descriptors and MIF
AUC Test Set without VS: 0.83 With VS : 0.90




DeepGRID: try to understand how the CNN works

It is possible, although quite tricky, to dump the features as extracted
by the Gonvolutional layers:
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Linear Regression

Linear Regression models predict a

are normally distributed.

Ya

Observed value

Y
Random error £
Y
P

Predicied walue

Intercept 6 {

Y
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A Formula search

Methods, such as random forest (RF) or neural network (NN), are very efficient 36 but not always
transparent, partially blurring the comprehension of the role played by the input variables in the final

Improvements toward the interpretability of such “black-box” ML models have been made
through additional methodologies, such as model-agnostic methods (i.e., permutation feature
importance)

o A ML-based approach to build sets of features (or descriptors) starting from a given set offbasic
variables (e.g., atomic properties), subsequently used to construct LR models (or formulas)

Inspired by the original work of Ghiringhelli et al. prediction of the difference in energy between RS
[rocksalt\ and /B; (zinc blende) from that optimization, a classification of the most stable crystal
structure semiconductor AB binary compounds (full dataset is made of 82 compounds)

daykumar Gajera, Loriano Storchi, Danila Amoroso, Francesco Delodovici, Silvia Picozzi "Towards machine
learning for microscopic mechanisms:a formula search for crystal structure stability based on atomi
properties" Journal of Applied Physics, DOI: 10.1063/5.0088177 (2022)




d

A Formula search

7 Atomic Properties (APs)

IP lonization potential
EA Electron Affinity
HOMO Highest occupied level

LUMO Lowest unoccupied level

T radii of s orbital
T radii of p orbital
T4 radii of d orbital

C

Binary system based on
Mulliken’s electronegativity(EN)

A,B where EN(A) < EN(B)

2 types of atoms

7 APs per atom

IP, EA, HOMO, LUMO, 75, 13, 74

5 prototype functions (f (X))

X, X2, X3,VX, eX

Material Feature Generator

Ex-L: Gen;’ p, = 1(4Py) £ f2(APy)
L7 F.(AP3) £ f1(APy)

For each possible model, calculate
average of RMSEs for random N test-
train splits using Linear Regression

— f1(APy) £ f,(AP,)
f3(AP3) % f4,(AP,)

AE

Selection of the best 10 formulas
having the smallest RMSE for
formula optimization

ax f1(AP) £ b x f,(AP,)

ARSI Ftar) d> AT

Top formulas to predict AE and
further physical analysis



A Formula search

GEN1: combine two prototype functions in the
numerator, forcing them to belong to the same
kind of APs, which is both “spatial™like or both

GEN2: combine two prototype functions with the
same kind of APs at the numerator and a single
prototype function at the denominator with an

“energy’-like; one prototype function is at the

argument of a different kind with respect o the
denominator with the only constraint to be

numerator ones. For instance, if AP, in f, (AP, )
and AP, in f, (AP, ) are “energy” terms (i.e., EA or
HOMO), then AP, must be a “spatial” term (i.e., r,

) /

Si(AP1) + f2(AP,)

MF =

f3(AP3)



A Formula search

GEN3: combine two prototype functions at both GEN4: combine two prototype functions with the

the numerator and denominator without an same physical dimensions at both the numerator

Fo fi(APy) % f,(AP,)
MF — fi(APy) ifz(APz). ~ f:(AP3) * fo(APy)’
f3(AP;) + f4(APy)

*=4 — X +.



A Formula search

a Xfl(Apl) *x b sz(APz)

AE = m X + )
¢ X fs(APy) % d x fy(APy) 1

GRID search, for each set of weight coefficients generated
during the grid search, we also run the linear regression.
Thus, we are performing a proper formula optimization, as at
each step of the grid search, we are updating both the
weight coefficients as well as the slope and intercept

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.127 x LEOXEAB)-LOOXIPB) _ 357 0.1457 0.1419 0.89 89 1D descriptor
110%1,(A)
_1.870 x 0-8‘”*v’f((i’o;"r"’(":;e""[”’“‘” —0.968 0.1191 0.1143 0.93 91 GENI1
' P
0.477 x 2EExV '”O‘wlol‘fg'x"r"‘(f’)?x VILUMOB) _ g 375 0.1340 0.1296 0.91 91 GEN2
. 4
0.642x1,(B)+0.502x \/|ra(A)] [ apg

1.609 X —— A R 0.0991 0.0961 RVAJomun 04 GEN3
005 e sroxr B OZXE) . Gy 0.1045 0.1016 0.94 99

0.512xr,(B)’+0.610 x1,(A)’

———

GEN4

1D formulas after the optimization step, aiung witii ieiated statistics. Nutativn as in 1anie I. KMSEs are in eV.



A Formula search

Generator Total Number of  Elapsed time (s) for 1D Elapsed time (s) for formula
generated formulas formula construction  optimization

GENI 106400 5117.32 180.84
GEN2 67840 3338.93 181.54
GEN3 1091200 51821.54 420.52
GEN4 278106 13237.39 418.62

Time needed to generate the best 1D formula and perform its optimization. All the calculations have

been performed in a PC equipped with an Intel Core i5-8500 processor and 16 GiB of RAM.
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A Scoring Function

Predicting ligand-metalloenzyme binding affinity, focusing on human Carbonic Anhydrase ||
(hCA 1) inhibitors. It combines fragment molecular orbital (FMO) and GRID approaches,

FMO Calculations: FMO2 calculations were performed on reduced ligand-recepto
complexes to assess binding energies and pair interaction energies.
GRID Calculations: GRID was used to calculate hydrophobic interaction fields and

quantify hydrophobic interactions.

Dataset: A set of benzenesulfonamide ligands of hCA 1l was selected as a case study.

Roberto Paciotti, Nazzareno Re,Loriano Storchi, "Combining the Fragment Molecular Orbital and GRID
Approaches for the Prediction of Liganda€“Metalloenzyme Binding Affinity: The Case Study of hCA IT
Inhibitors", Molecules, DOI: 10.3390/molecules29153600 (2024)




A portion of the Ligand 2

- - structure connected to the
A Scormg FunCtmn benzenesulfonamide is polar

compared to other ligands,

AG = —7.4{[0.7(logP)> — 0.5(e™EE)]/[0.5(F2LE)® — 0.4(HIE-E)’]} — 17
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predicted AG (kcal/mol) in the crystal structure.



A Scoring Function

AG = —7.4{[0.7(logP)> — 0.5(e™EE)]/[0.5(F2LE)® — 0.4(HIE-E)’]} — 17

To improve the binding
9 R” =0.95
10 benzenesulfonamide there

11 should be a certain balance

between electrostatic and
13 hydrophobic interactions in
14 order to minimize the

exp. AG (kcal/mol)

s F—_——r denominator and maximize

N predicu;«li2 AG (kcal/mol) " maximize the binding affinity
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Interpretable Machine Learning

Interpretable Machine Learning: Techniques to
explain and understand model predictions.

Provides insights into feature importance and model
decision-making process.

Helps build trust and transparency in ML systems.
Enables identification of biases and potential areas




Random Forrest and Permutation Feature Importance

Use the RF model not for prediction purpose but to detect how much a feature is important respect
to the others. Two ingredients:
he permutation feature importance is defined to be the decrease in a model score when a
single feature value is randomly shuffled. This procedure breaks the relationship between
the feature and the target, thus the drop in the model score is indicative of how much the
Random forests or random decision forests is an ensemble learning method for
classification, regression and other tasks that operates by constructing a multitude

of decision trees at training time

Leonardo Aragao, Elisabetta Ronchieri, Giuseppe Ambrosio5, Diego Ciangottini, Sara Cutini, Cristina
Duma, Pasquale Lubrano, Barbara Martelli, Davide Salomoni, Giusy Sergi, Daniele Spiga, Fabrizio Stracci,
Loriano Storchi "Air quality changes during the COVID-19 pandemic guided by robust virus-spreading data

in Italy",to Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-023-01495-x (2024)
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104 Italian provinces analysed applying
the Permutation Feature Importance
Analysis to a set of different Random
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Conclusions and next step

Different approaches (i.e. directly interpretable of more Black Box like models)
ML can be use also to gain some insights about data rather then “simply” predict

Features can be booth simple as well as more structured data

Formula generator using different approaches/models: PLS, PCR, but also GAN



THANK YOU

Daniele Spiga
Diego Ciangottini
Mirco Tracolli iotti
Cecilia Coletti
Jizhen Hong}
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ML INTRODUCTION




Machine Learning

Supervised: used when you want to predict or explain the data you possess. A supervised algorithm takes a

known set of input data and known responses to the data (output) and trains a model to generate reasonable

Build Model

F(X1, X2)=Y
Y

o8

’/' '.IO.'

MNew Data Use Model



Machine Learning

Features could be:

: the day of the yea
Regression Classification
RN
What will be the temperature §Q(‘o Will it be hot or cold
tomorrow? R~ ﬁ tomorrow?
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Neural Network

A layer is a collection of
neurons which take an

If there is more than 1
hidden layer then it is
called a Deep Neural




Image Recognition

Recognition of people,

Trained using thousands of

pre-labelled images

cow

. Hidden Layer . Output Layer
Flatten




Convolutional Layers — extracting feature

An image is a cuboid having

its length, width (dimension of
the image), and height (i.e the
channel 3 channelrs for RGB
Kernel slides across the height

and dot product of the kernel
and the image are computed

v

Kernel




Convolutional Layers — extracting feature

Accessibility using CNNs

Kelley DR, Snoek J, Rinn JL
Basset: learning the regulator
code of the accessible genome
with deep convolutional neural
networks. Genome Research.
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N.-H. Inelastic Collisions quantum-classical rate coefficients

GPR seems to be generally the best choice in this scenario but :

Model/Scenario  Wall Time (s)
GP /Scenariol 313.392
NN /Scenariol 8.689
GP /Scenario2 420.473
NN /Scenario2 10.594
GP/Scenario3 340.595
NN /Scenario3 10.601
GP /Scenario4 69.451
NN /Scenario4 5.554

Wall times for the training
processes of GP and NN
models performed on an

Intel(R) Xeon(R) CPU E5-1620
v4 running at 3.50GHz (i.e.,




N.-H. Inelastic Collisions quantum-classical rate coefficients

PP lora 1 ool Test set MSE values for the

| - two models obtained by

| ] & ooer removing an increasing
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VolSurf 3 performance, VS-IgBB-332 dataset

VS3 IgBB

The plots show Exp vs Pred for: S | | |
NGRS B R
Avg prediction across confs SR e U s U

Best prediction by conf

The Avg prediction for the test

set gives: :
MSE: 0.21 ,
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Initial Summary

The DeepGRID model has successfully extracted relevant features from
the raw GRID MIFs and given a good model when compared to standard
approaches using the hand-crafted VolSurf descriptors

Random Forest + VolSurf descriptors slightly better overall than all




From 2D images with 3 channels — 3D images with 8 channels using GRID




DeepGRID Hyperparameters optimization

A grid search has been used to test various combinations of
Hyperparameters , including:
CNN filters, kernel sizes, number of dense layers, units per layer

The model was run for 35 epochs and potentially could be run for
longer for additional slight improvements




Removing CHEBI338620 as an outlier

CHEBI338620 has an reported experimental IgBB of -2.15
However |t is very similar to Cimetidine which has shown limited BBB

MSE GMFE % <2.0 % <3.0 Without CHE BI338620 MSE GMFE % <2.0 % <3.0
DeepGRID 75 024 387 636 742 DeepGRID 75 019 279 646 754
RF 0.18 3.09 600 815 RF 0.14 234 609 828
PLS 022 320 585 723 PLS 020 297 594 734

VS3IigBB 0.27 377 43.1 66.2 VS3IigBB 023 3.18 438 67.2




Light-lgBB-416 dataset is more diverse

More diverse — more difficult— all approaches give less accurate

MSE GMFE % <2.0 % <3.0
DeepGRID 75 0.38 5.04 53.0 69.1
RF 0.31 4.27 53.0 63.9
PLS 0.35 4.79 37.4 60.2

VS3igBB 0.42 /.78 36.1 06.6




VolSurf IgBB PLS model does a good job
All models classification performance (ROC-AUC) on the 2105 dataset

100
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2105 2105
DeepGRD-R RF-R S31g Dee pGHD—R RF R PLS-R DeepGRID-C RF-C




RF performance, VS-IgBB-332 dataset

The plots show Exp vs Pred for: e — O —— —  E———
All conformers - f’f{ SR A
Avg prediction across confs D e

Best prediction by con

The Avg prediction for the test

set gives:

MSE: 0.18
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PLS performance, VS-IgBB-332 dataset

The plots show Exp vs Pred for:
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Machine Learning and the GRID Force-Fields

We huild PLS models, each model is related to a specific AT, to improve the quality of the
Hydrogen-Bonding term E  that is the product of three terms terms:

E_based on the distance between the target and the probe given in kcal/mol
The other two, both ranging in the interval 0-1. They are dimensionless functions of the angles t and p made by the hydrogen bond
(HB) at the target and the probe atoms respectivel

Er assumes relative values in case of interaction with a HB acceptor or dono
complementary probe and is parametrized by two values: Emin is the strongest
hydrogen-bond attraction energy at the optimum position (Emin), and half
of the straight-line distance between donor and acceptor atom pairs which
corresponds to the strongest hydrogen-bond attraction energy (Rmin)

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational
Chemistry, DOI: 10.1002/jcc.26737 (2021)




Machine Learning and the GRID Force-Fields

The dataset is made of 66463 drug-like molecules

We used GAMESS-US B3LYP/SVP (necessity of having a versatile basis set and method) to

compute the Electrostatic Potential (EP) for each atom

EP is converted to the so called dEmin value using linear equation derived so that for each AT

all the resulting dEmin values always fall within an acceptable range

dEmmBH = MpH EP + dBH- 22 equations, each one fo
each Atomlype

. The dEmin is our label
dEminay = —mMay™*EP — qay.



Machine Learning and the GRID Force-Fields

N:= sp2 N with lone pair (HB acceptor) N1 Neutral flat NH eg amide (HB donor)

0.04

N
o

&
o

dEmin (kcal/mol)
dEmin (kcal/mol)

551 6.0

£.04

-18.40 -18.35 -18.30 -18.25 18.30 -18.25
EP (A.U.) EP (A.U.)

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and -4.0 for N1 atom
types. dEmin, dynamic Emin




Machine Learning and the GRID Force-Fields

Does chemically sound to use the dEmin in the the E,; term ?

We decided to test the correlation of
the proposed dEmin to those
experimental hydrogen-bonding (HB)
properties.

dEmin versus H-bond basicity scale
for the Kenny dataset (279 atoms, R

-4
dEmin (kcal/mol)



Machine Learning and the GRID Force-Fields

We have a good label, now we need to select the feature (descriptor) to use in the model

The molecular environment is described by a tree-structured molecular fingerprint with a
length of 10 bond distances

N 3H 122
C.3 326 11 C.3 326
C.3 629 10 C.3 629
N.3 ar 1016

C.ar+ 1250
NPYM 1706 6 NPYM 1706
C.ar+ 1856 1 C.ar+ 1856




Machine Learning and the GRID Force-Fields

Using this approach, 22 PLS models were built relating atomic environment to dEmin for
the HB GRID atom types (some of the models results are reported validated using

H-bond SDEC SDEP

AT Description type Atoms LV R? @ (kcal/Mol)  (kcal/Mol)
N: sp3 (tertiary) nitrogen, accepting one H-bond A 6954 9 0.92 0.88 0.56 041
N1: sp3 (secondary) nitrogen, donating one hydrogen and A 3941 8 0.91 0.84 0.24 049

accepting ohe H-tiond D 4776 7 096 092 030 053
N2: sp3 (primary)nitrogen, donating up to two hydrogen and A 3618 8 0.84 0.71 0.26 0.38

acceping one Heoond D 4895 7 095 092 030 041
ON oxygen of nitro or nitroso group, accepting up to two H-bond A 4907 8 0.82 0.69 0.26 0.38
N:= sp2 (aromatic) nitrogen, accepting one H-bond A 27,140 12 091 0.89 0.35 047
N:: sp2 nitrogen with two lone pairs and one double bond A 472 4 0.89 0.59 0.23 0.12
N:# sp nitrogen A 15,798 10 072 066 029 0.32



Machine Learning and the GRID Force-Fields

FORTRAN C/C++
PROGRAM _ LIBRARY

Simpler way to
use it in othe
projects

pKa prediction for small molecules (and proteins)
VolSurf, Almond and SHOP use molecular descriptors from 3D Molecular Interaction Fields (MIFs)
produced by GRID

MetaSite is a computational procedure that predicts metabolic transformations related to
cytochrome-mediated reactions in phase | metabolism




Machine Learning and the GRID Force-Fields

Easiest way is one thread for each probes (excellent speedup)
One thread for each XY plane of the grid (big molecules)

Speedup vs. # thread
# threadsgiSpeedup peeHp e A
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Intel Xeon E5420 2.50GHz



FORMULA SEARCH




A Formula search

Formula search for crystal structure
stability based on atomic properties.
Uses basic atomic properties to
construct material features.

Employs machine learning methodology,
to construct formulas.

The final result is a transparent,
human-readable mathematical formula.




A Formula search

Formula avg (RMSE) RMSE R? Success rate (%) Generator type
0.117 x W —0.342 0.1455 0.1423 0.89 89 1D descriptor””
—0.751 X P‘B’:(—A;’”B” —0.317 0.1296 0.1193 0.92 90 GEN1
0.285 x @;{m —{0:387 0.1367 0.1309 0.91 91 GEN2
0.774 X %@ —0.303 0.0995 0.0963 0.95 94 GEN3
1.155 x H —0.368 0.1103 0.1058 0.94 96 GEN4

1D formulas, along with related statistics: avg(RMSE) denotes the root mean squared error for average over 1000 random
train-test splits of dataset. Instead, the RMSE is the root mean squared error for the entire dataset as training and test.
Similarly, the R2 values are calculated considering the entire dataset, and they show the quality of fit between predicted and

actual values. The success rate (in percent) shows how many RS or ZB phases out of 82 have been correctly identified by the
descriptor. The “Generator type” column indicates the different generators used to produce the corresponding formula.




A Formula search

*, v Tt
_02 (VXY rolA)*

< =Y . 1
-0.4 i i " fp(A)3

00 02 04 06 08 10

10 15 20 25 30 35
rp(A)[A]

The final outcome of our procedure is a transparent
formula, not necessarily of easy mathematical
formulation, but revealing which part of the input
mostly affects the output, i.e., allowing the
identification of the main driving physical feature

Interestingly, our results reveal the size of the A
cation to play a leading role in the phase
stabilization; in fact, the r_(A) radius appears in the
best-performing formulas more frequently than the
other basic atomic properties

Data fit functions are also shown, using

proportionality to rp(A)2 and rp(A)3 via a green
dashed line and a red straight line, respectively.




SCORING FUNCTION




A Scoring Function

ligand AEFMO F2LE EINT FE
1 ~37.6 -1.6 —-173.2 —7.2
2 —53.7 -2.1 —186.2 ~7.2
3 —37.4 -1.5 —~175.5 -7.0
4 —42.7 1.7 ~173.6 —6.9
5 —61.1 -2.5 —181.1 ~7.5
6 —-36.7 —-1.5 —163.2 —6.8
7 —67.6 -3.1 —180.1 —8.2
8 —70.5 -3.2 —~179.3 -8.2
9 —38.6 ~1.8 —163.8 ~7.4

AEFMO , F2LE, EINT and FE values computed for LR complexes formed by ligands 1-9

and hCA Il. All energy values are in kcal/mol.




A Scoring Function

Ligand HIE * HIE-E * logP
1 —38.9 —1.6 0.92
Z ~37.9 o 3 —0.01
3 —28.1 -1.1 —0.36
4 —30.6 ~1.2 0.41
5 —35.0 ~1.5 —0.28
6 —24.3 -1.0 0.68
7 =32.0 ~1.5 0.6
8 —30.2 -1.4 0.32
9 —34.3 —1.6 0.46

* vralicnn den Leanl fean Al

Computed values for HIE, HIE-E (HIE/number of heavy atoms) and logP.



