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Machine Learning
Machine learning techniques can be divided into two foremost types:
● Unsupervised: find hidden patterns or intrinsic structures in data. They are used to draw 

inferences from data sets consisting of input data without labeled responses (i.e. clustering 
algorithms)

● Supervised: used when you want to predict or explain the data you possess. A supervised 
algorithm takes a known set of input data and known responses to the data (output) and trains a 
model to generate reasonable predictions

● Reinforcement Learning: the algorithms learn to react to an environment on their own. An 
agent is in a situation of trial and error, where the consequences of its actions have an impact on 
the environment and also on the problem’s goal. The agent is punished or rewarded on the basis of 
its behavior, with the idea that, in the future, it will prefer optimal actions  (i.e. our intelligent 
cache system)

Tommaso Tedeschi, Marco Baioletti, Diego Ciangottini, Valentina Poggioni, Daniele 
Spiga, Loriano Storchi, Mirco Tracolli, "Smart Caching in a Data Lake for High Energy 
Physics Analysis", Journal of Grid Computing, DOI: 10.1007/s10723-023-09664-z (2023)
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Neural Network abd CNN
Deep learning is a subset of machine learning that 
uses artificial neural networks with multiple layers 
to extract higher-level features from raw input 
data.
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N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients
● Rate coefficients for vibrational energy transfer are calculated for collisions 

between molecular nitrogen and hydrogen in a wide range of temperature 
and of initial vibrational states
○ The calculations were performed by a mixed quantum-classical 

method
ML Goal  Predict rate coefficients for vibrational energy transfer processes 
involving specific initial vibrational states, which are computationally 
expensive to calculate directly.

Qizhen Hong, Loriano Storchi, Massimiliano Bartolomei, Fernando Pirani, Quanhua Sun, 
Cecilia Coletti, "Inelastic N2+H2 collisions and quantum-classical rate coefficients: 
large datasets and machine learning predictions" The European Physical Journal D, DOI: 

10.1140/epjd/s10053-023-00688-4 (2023



 
We used an tested two possible approaches:
● Neuronal Network (NN)
● Gaussian Process Regression (GPR):

○ Non-parametric, Bayesian approach to regression.
○ Flexible models that work well on small datasets 
○ Start from the assumption that f(x) and f(y) are 

normally distributed with some meand and some 
covariance  being x known points (training) and y 
unknown points (test) 

○ Make predictions based on the similarity between 
data points.

○ Kernel function defines the similarity measure 
between points.

○ Hyperparameters of the kernel function are 
learned from the data.

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



log10(k)  is the label

v, T are the two features 

We want to test the performances of 
ttwo models NN and GPR  

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



GPR using Matern Kernel 
v = 5/2

NN model unsinf Linear 
activation in input and 
output and ReLU

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



Test set MSE values as a 
function of temperature: 
log10 (k) values 
corresponding to a 
specific temperature T 
were
removed from the training 
set and constitute the test 
set. The three panels 
correspond to processes 
(5) with Δv = 1, 2, 3,
respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



Test set MSE values as a 
function of initial 
vibrational quantum 
number v: log10 (k) values 
corresponding to a
specific v were removed 
from the training set and 
constitute the test set. 
The three panels 
correspond to processes 
(5) with
Δv = 1, 2, 3, respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



The test set MSE values for the two 
models obtained by removing an 
increasing number of systematically 
selected
points, corresponding to specific v values, 
from the training set, i.e., Set1, removed v 
= [2; 4; 6; 8; 10; 14; 18; 22; 26; 30;
35], Set2, removed v = [1; 3; 5; 7; 9; 12; 
16; 20; 24; 28; 32; 40], Set3, removed v = 
[2; 3; 5; 6; 8; 9; 12; 14; 18; 20; 24; 26; 30;
32], Set4, removed v = [1; 2; 4; 5; 7; 8; 10; 
12; 16; 18; 22; 24; 28; 30; 35; 40]. The 
three panels correspond to processes (5)
with Δv = 1, 2, 3, respectively

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



GPR Δv = 1 

Blue [points are the predicted 
ones, while the green points 
are the training set 

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients



Preliminary new results 
after a deeper grid 
search of better 
hyperparameters 

NN [64; 64; 64] batch 
10 epochs 100 

GPT Mattern Kernel v = 
2

N2−H2 Inelastic Collisions mixed quantum-classical rate coefficients
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Machine Learning and the GRID Force-Fields
● GRID program: a computational procedure for determining energetically favourable binding sites on 

molecules for functional groups of known structure through the use of PROBES.
○ The PROBE is moved through a grid of points superimposed on the target molecule (to each atoms of the target and 

AtomType is assigned) . Its interaction energy with the target molecule is computed  by an empirical energy 
function 

EXYZ = Σ[ELJ] + Σ[EHB] + Σ[EQ] + [S] 
ELJ= Lennard-Jones potential EHB= hydrogen bonding interaction energy EQ= 
electrostatic function S= entropic term



Machine Learning and the GRID Force-Fields
We build PLS models, each model is related to a specific AT, to improve the quality of the 
Hydrogen-Bonding term  EHB that is the product of three terms terms:

● Er based on the distance between the target and the probe given in kcal/mol
● The other two, both ranging in the interval 0–1. They are dimensionless functions of the angles t and p made by the hydrogen bond 

(HB) at the target and the probe atoms respectively

Er assumes relative values in case of interaction with a HB acceptor or donor 
complementary probe and is parametrized by two values: Emin is the strongest 
hydrogen-bond attraction energy at the optimum position (Emin), and half 
of the straight-line distance between donor and acceptor atom pairs which 
corresponds to the strongest hydrogen-bond attraction energy (Rmin).

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano 
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware 
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational 

Chemistry, DOI: 10.1002/jcc.26737 (2021)

Emin → dEmin



Machine Learning and the GRID Force-Fields
The dataset is made of 66463 drug-like molecules 

● We used GAMESS-US B3LYP/SVP (necessity of having a versatile basis set and method) to 
compute the Electrostatic Potential  (EP) for each atom

● EP is converted to the so called dEmin value using  linear equation derived so that for each AT 
all the resulting dEmin values always fall within an acceptable range

22 equations, each one for 
each AtomType

The dEmin is our label 



Machine Learning and the GRID Force-Fields

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and  -4.0 for N1 atom 
types. dEmin, dynamic Emin

N1  Neutral flat NH eg amide (HB donor)N:=  sp2 N with lone pair (HB acceptor)



Machine Learning and the GRID Force-Fields
Does chemically sound to use the dEmin in the the EHB term ? 

We decided to test the correlation of 
the proposed dEmin to those 
experimental hydrogen-bonding (HB) 
properties.

dEmin versus H-bond basicity scale 
for the Kenny dataset (279 atoms, R 
– Pearson = 0.85). 



Machine Learning and the GRID Force-Fields
We have a good label, now we need to select the feature (descriptor) to use in the model
The molecular environment is described by a tree-structured molecular fingerprint with a 
length of 10 bond distances



Machine Learning and the GRID Force-Fields
We build PLS models, each model is related to a specific AT, to improve the quality of the 
Hydrogen-Bonding term  EHB 

Emin PLS dEmin



Machine Learning and the GRID Force-Fields
Using this approach, 22 PLS models were built relating atomic environment to dEmin for 
the HB GRID atom types  (some of the models results are reported validated using 
leave-one-out crossvalidation)



Machine Learning and the GRID Force-Fields
More chemically aware force-field 

The energy values of the isocontour surfaces 
chosen for H-bond donating probe (“N1,” probe) 
was 4.0 kcal/Mol
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DeepGRID
Two ingredients are needed:

● Deep Learning techniques 
(i.e., CNN) 

● GRID MIFs

Loriano Storchi, Gabriele Cruciani, 
Simon Cross, "DeepGRID: Deep 

Learning using GRID descriptors for 
BBB prediction", Journal of 

Chemical Information and Modeling, 
DOI: 10.1021/acs.jcim.3c00768 

(2023)



DATASET AND LABEL



Test Case: Blood Brain Barrier Permeation
● A model exists within VolSurf (PLS) – we have a baseline

● We can investigate a number of modelling approaches:
DeepGRID, Random Forest & PLS (using VS descriptors)

● There are some larger publicly available datasets
eg. LightBBB (7000 cpds)

● VolSur
f



Dataset Preparation
● VS-lgBB-332 dataset In-house dataset used to build the original VolSurf model 
● Light-lgBB-416 dataset A subset of the 2105 dataset which had experimental logBB 

values
● Light-BBclass-2105 dataset - Classification Generated from the Shaker/Parakkal 

LightBBB dataset of 7000+ structures 
○ After filtering by InChI to remove duplicates 4285 compounds remained (-40%!) 
○ Given that such a large proportion of the dataset contained duplicates we filtered 

also by Druglikeness to give 3464 compounds 
○ 70% of the dataset removed due to duplicate InChI strings or diastereoisomerism 

●



Dataset Splitting
● For each dataset, subsets of compounds were randomly selected:

○ Training Set: 60% - used to train the models
○ Validation Set: 20% - used to select the best hyperparameters or 

to train the CNN
○ Test Set: 20% - used as a final performance check

● The same sets were used for each model



FEATURES



DeepGRID Approach
 GRAID descriptors calculated (normalised GRID MIFs, 8 channels)
Descriptors fed into a Deep Learning CNN model

Note: in this case the training and validation sets were mixed so that different viewpoints of the 
same molecule were in training/validation, to allow the model to learn from the viewpoints



DeepGRID is alignment independent
 Each molecule conformation centred within a grid cage 0,0,0 to 30,30,30
27 ‘Viewpoints’ generated by rotating the molecule around each axis



MODEL



DeepGRID Model
● 3 convolutional layers, drop out and max pooling 

○ extracting features and reducing the dimensionality 
● Flattening layer
● 3 dense layers and drop out before the final dense layer 



OTHER MODELS AND FEATURES



DeepGRID Hyperparameters optimization 
Volsurf Descriptors 



Random Forest Approach
● Each molecule conformation was used to 

calculate the VolSurf descriptors
● The VS model descriptors were removed (eg. 

LgBB and Caco2)
● A grid search was performed to optimize the 

hyperparameters and identify the best model 
scored using the validation set



Partial Least Squares Approach
● Each molecule conformation was used to 

calculate the VolSurf descriptors
● The VS model descriptors were removed (eg. 

LgBB and Caco2)
● A PLS model was generated and the number 

of components has been obtained looking for 
the best RMSE in the validation set while 
increasing the number of LV (Latente 
Variables) 

It is a linear relation but instead of 
the pure X variables we are using LV 
(Latent Variables) similar to PCR 
(Principal Components Regression) 
but LV are build to “better correlate” 
also Y variable respect to PC 
(Principal Components).



DeepGRID vs RF and PLS models

Volsurf3 Descriptors

Extracted features used by 
the dense layersQuite some time was 

needed to develop the 
VS descriptors 



RESULTS



VS-lgBB-332 Dataset

Lower is better Higher is better



Light-lgBB-416 dataset is more diverse
More diverse → more difficult→ all approaches give less accurate 
models   

Lower is better Higher is better



DeepGRID gives a robust model
● Y-Scrambling the data 

affects the model, ie. It is 
not overfitting

● At 5% scrambling the Test 
MSE is only 17% worse, 
hence the approach is 
relatively robust to 
erroneous data 

○



Regression → Classification 
● The regression models for described can also be used for classification 

(BBB +/-)
● Compounds with experimental lgBB close to 0.0 may be ambiguous and 

misclassified
● In this case we measured the ROC AUC at varying thresholds on the Test 



Classification: VS-lgBB-332 model
● At a minimal threshold of 0.1, all models predict with >90% accuracy
● The RF model is slightly better



Classification: Light-lgBB-416 model
● At minimal threshold of 0.1, all models predict with ~90% accuracy
● All models are fairly equal



Classification Models - Light-lgBB-2105 dataset
● New classification models were built using DeepGRID and Random 

Forest (with hyperparameter optimization)
● Initial attempts with DeepGRID kept stalling during learning
● Potentially due to data imbalance?
● The BBB- cpds were artificially augmented to bring the balance to 

0.5:1
− successful learnin



DeepGRID Classification Models - Light-lgBB-2105 
dataset
AUC Full Set: 0.97 Test Set: 0.87 



RF Classification Models - Light-lgBB-2105 dataset
AUC Full Set: 0.95 Test Set: 0.84 



DeepGRID model the best for classification
All models classification performance (ROC-AUC) on the 2105 dataset 



DeepGRID: mixing VS descriptors and MIF
Clearance mechanism classification fro drugs two classes :

● Metabolic Clearance: This is the most complex mechanism, 
involving the biotransformation of drugs into more hydrophilic 
metabolites to facilitate excretion.(643 compounds)

● Renal Clearance: This mechanism involves the direct excretion of 
drugs in the urine, typically for small, hydrophilic compounds. (329 
compounds)

I am using augmentation techniques 



DeepGRID: mixing VS descriptors and MIF
Two model are cocananated :

- Model 1 is the CNN model 
- Model 2 is a simple input layer 

thata is getting the VS 
descriptors just before the 
flattening layer 



DeepGRID: mixing VS descriptors and MIF

VS descriptors are appended together with the output of 
the Convolutional layers in the flatten layer  



DeepGRID: mixing VS descriptors and MIF
AUC Test Set without VS: 0.83 With VS : 0.90 



DeepGRID: try to understand how the CNN works
It is possible, although quite tricky, to dump the features as extracted 
by the Convolutional layers:
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 Linear Regression models predict a 
dependent variable (Y) based on 
independent variables (X).

 The relationship between the 
variables is assumed to be linear.

 Models are relatively simple and 
easy to interpret.

 Common applications include 
predicting sales, energy 
consumption, and other continuous 
values.

 A key assumption is that the errors 
are normally distributed.

Linear Regression



● ML Introduction
● Deep Learning

○ Fitting using ML 
○ GRID MIFs
○ DeepGRID

● Linear Regression
○ A formula search for crystal structure stability 
○ A Scoring Function

● Interpretable Machine Learning 
● Conclusions and future work



A Formula search
Methods, such as random forest (RF) or neural network (NN), are very efficient 36 but not always 
transparent, partially blurring the comprehension of the role played by the input variables in the final 
results 
● Improvements toward the interpretability of such “black-box” ML models have been made 

through additional methodologies, such as model-agnostic methods (i.e., permutation feature 
importance)

● A ML-based approach to build sets of features (or descriptors) starting from a given set of basic 
variables (e.g., atomic properties), subsequently used to construct LR models (or formulas)

Inspired by the original work of Ghiringhelli et al. prediction of the difference in energy between RS 
[rocksalt\ and ZB; (zinc blende) from that optimization, a classification of the most stable crystal 
structure semiconductor AB binary compounds (full dataset is made of 82 compounds)

Udaykumar Gajera, Loriano Storchi, Danila Amoroso, Francesco Delodovici, Silvia Picozzi "Towards machine 
learning for microscopic mechanisms:a formula search for crystal structure stability based on atomic 

properties" Journal of Applied Physics, DOI: 10.1063/5.0088177 (2022)



A Formula search
 (a) Basic atomic 
properties (APs) used 
to construct the 
material features. (b) 
Crystal structures of 
RS and ZB (plot made 
using the VESTA tool). 
62 Gray (yellow)
spheres represent A 
(B) atoms. (c) 
Workflow for formula 
construction, 
machine-learning 
methodology, 
validation, and MF 
selection.



A Formula search
GEN1: combine two prototype functions in the 
numerator, forcing them to belong to the same 
kind of APs, which is both “spatial”-like or both 
“energy”-like; one prototype function is at the 
denominator with the only constraint to be 
non-zero

GEN2: combine two prototype functions with the 
same kind of APs at the numerator and a single 
prototype function at the denominator with an 
argument of a different kind with respect o the 
numerator ones. For instance, if AP1 in f1 (AP1 ) 
and AP2 in f2 (AP2 ) are “energy” terms (i.e., EA or 
HOMO), then AP3 must be a “spatial” term (i.e., rp 
)



A Formula search
GEN3: combine two prototype functions at both 
the numerator and denominator without any 
constraints,

GEN4: combine two prototype functions with the 
same physical dimensions at both the numerator 
and denominator



A Formula search

1D formulas after the optimization step, along with related statistics. Notation as in Table I. RMSEs are in eV.

GRID search, for each set of weight coefficients generated 
during the grid search, we also run the linear regression. 
Thus, we are performing a proper formula optimization, as at 
each step of the grid search, we are updating both the 
weight coefficients as well as the slope and intercept 
coming from the LR



A Formula search

Time needed to generate the best 1D formula and perform its optimization. All the calculations have 
been performed in a PC equipped with an Intel Core i5-8500 processor and 16 GiB of RAM.
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A Scoring Function
Predicting ligand-metalloenzyme binding affinity, focusing on human Carbonic Anhydrase II 
(hCA II) inhibitors. It combines fragment molecular orbital (FMO) and GRID approaches,
● FMO Calculations: FMO2 calculations were performed on reduced ligand-receptor 

complexes to assess binding energies and pair interaction energies.
● GRID Calculations: GRID was used to calculate hydrophobic interaction fields and 

quantify hydrophobic interactions.
● Dataset: A set of benzenesulfonamide ligands of hCA II was selected as a case study.

Roberto Paciotti, Nazzareno Re,Loriano Storchi, "Combining the Fragment Molecular Orbital and GRID 
Approaches for the Prediction of Ligandâ€“Metalloenzyme Binding Affinity: The Case Study of hCA II 

Inhibitors", Molecules, DOI: 10.3390/molecules29153600 (2024) 



A portion of the Ligand 2 
structure  connected to the 
benzenesulfonamide is polar 
compared to other ligands, 
which determines, in 
principle, a better 
interaction with water 
molecules. Thus, we 
hypothesize that the its 
binding pose in the 
experimental conditions 
assumed in the 
measurement of the Ki 
could be influenced by 
surrounding water 
molecules and be slightly 
different from that observed 
in the crystal structure.

A Scoring Function



To improve the binding 
affinity of the 
benzenesulfonamide there 
should be a certain balance 
between electrostatic and 
hydrophobic interactions in 
order to minimize the  
denominator and maximize
maximize the  binding affinity

A Scoring Function
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 Interpretable Machine Learning: Techniques to 
explain and understand model predictions.

 Provides insights into feature importance and model 
decision-making process.

 Helps build trust and transparency in ML systems.
 Enables identification of biases and potential areas 

for improvement.
 Enhances model debugging and validation.
 Two classes of method:
 - Model agnostic 
 - Model specific 

Interpretable Machine Learning 



Random Forrest and Permutation Feature Importance
Use the RF model not for prediction purpose but to detect how much a feature is important respect 
to the others. Two ingredients:
● The permutation feature importance is defined to be the decrease in a model score when a 

single feature value is randomly shuffled. This procedure breaks the relationship between 
the feature and the target, thus the drop in the model score is indicative of how much the 
model depends on the feature

● Random forests or random decision forests is an ensemble learning method for 
classification, regression and other tasks that operates by constructing a multitude 
of decision trees at training time

Leonardo Aragao, Elisabetta Ronchieri, Giuseppe Ambrosio5, Diego Ciangottini, Sara Cutini, Cristina 
Duma, Pasquale Lubrano, Barbara Martelli, Davide Salomoni, Giusy Sergi, Daniele Spiga, Fabrizio Stracci, 
Loriano Storchi "Air quality changes during the COVID-19 pandemic guided by robust virus-spreading data 

in Italy",to Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-023-01495-x (2024)  
 



Features



Results
104 Italian provinces analysed applying
the Permutation Feature Importance 
Analysis to a set of different Random
Forest models

The role of the pollutants seems not 
the most important 
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Conclusions and next step 

● ML techniques can be used with both big and small datasets  
● Different approaches (i.e. directly interpretable of more Black Box like models) 
● ML can be use also to gain some insights about data rather then “simply” predict
● Features can be booth simple as well as more structured data  

Formula generator using different approaches/models: PLS, PCR, but also GAN  
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BACKUP



ML INTRODUCTION



Machine Learning
Supervised: used when you want to predict or explain the data you possess. A supervised algorithm takes a 
known set of input data and known responses to the data (output) and trains a model to generate reasonable 
predictions

Y = Fa,b,c (X)

Labels: dependent 
variables (e.g. pKa 

values , could be also a 
class pass or not the 

BBB)

Features (descriptors): 
independent variables 
(e.g. Molecular weight, 

fingerprints )

Models: Linear Regression, 
Random Forest, Artificial 

Neural Network , Partial Leat 
Square



Machine Learning
Features could be: 
the day of the year 
and the today 
temperature 

Label: is the 
temperature for the 
regression and 



Neural Network
● A layer is a collection of 

neurons which take an 
input and provide an 
output 

● If there is more than 1 
hidden layer then it is 
called a Deep Neural 
Network



Image Recognition
● Recognition of people, 

animals, objects, places etc 
from digital images

● Trained using thousands of 
pre-labelled images

● Uses the pixels in each image 
as descriptors

● Trained to recognise if the 
image shows a certain class 



Convolutional Layers – extracting feature
● An image is a cuboid having 

its length, width (dimension of 
the image), and height (i.e the 
channel 3 channelrs for RGB 

● Kernel slides across the height 
and width of the image input 
and dot product of the kernel 
and the image are computed 



Convolutional Layers – extracting feature
Convolutional layers often detect edges and 
geometries in the image (Colors: RGB three channels )

Predicting Gene 
Accessibility using CNNs

Kelley DR, Snoek J, Rinn JL. 
Basset: learning the regulatory 
code of the accessible genome 
with deep convolutional neural 
networks. Genome Research. 
2016;26(7):990-999. 
doi:10.1101/gr.200535.115. 



CURVE FITTING



N2−H2 Inelastic Collisions quantum-classical rate coefficients
GPR seems to be generally the best choice in this scenario but :

Wall times for the training 
processes of GP and NN 
models performed on an
Intel(R) Xeon(R) CPU E5-1620 
v4 running at 3.50GHz (i.e., 
without GPU)



N2−H2 Inelastic Collisions quantum-classical rate coefficients
Test set MSE values for the 
two models obtained by 
removing an increasing 
number of random points 
(5% to 50%)
from the training set. The 
three panels correspond to 
processes (5) with Δv = 1, 2, 
3, respectively



DEEP GRID



VolSurf 3 performance, VS-lgBB-332 dataset
The plots show Exp vs Pred for:
−All conformers
−Avg prediction across confs
−Best prediction by conf

The Avg prediction for the test 
set gives:
−MSE: 0.27



DeepGRID performance, VS-lgBB-332 dataset
The plots show Exp vs Pred for:
−All conformers
−Avg prediction across confs
−Best prediction by conf

The Avg prediction for the test 
set gives:
−MSE: 0.24



Initial Summary
● The DeepGRID model has successfully extracted relevant features from 

the raw GRID MIFs and given a good model when compared to standard 
approaches using the hand-crafted VolSurf descriptors

● Random Forest + VolSurf descriptors slightly better overall than all 
approaches



From 2D images with 3 channels → 3D images with 8 channels using GRID



DeepGRID Hyperparameters optimization 
● A grid search has been used to test various combinations of 

Hyperparameters , including:
○ CNN filters, kernel sizes, number of dense layers, units per layer

● The model was run for 35 epochs and potentially could be run for 
longer for additional slight improvements



Removing CHEBI338620 as an outlier 
● CHEBI338620 has an reported experimental lgBB of -2.15
● However, it is very similar to Cimetidine which has shown limited BBB 

permeability 
● There is also the possibility at extreme values that transporters are involved
● Without this, all models are better, but DeepGRID shows excellent 

performance



Light-lgBB-416 dataset is more diverse
More diverse → more difficult→ all approaches give less accurate 
models   



VolSurf lgBB PLS model does a good job
All models classification performance (ROC-AUC) on the 2105 dataset 



RF performance, VS-lgBB-332 dataset
The plots show Exp vs Pred for:
−All conformers
−Avg prediction across confs
−Best prediction by conf

The Avg prediction for the test 
set gives:
−MSE: 0.18



PLS performance, VS-lgBB-332 dataset
The plots show Exp vs Pred for:
−All conformers
−Avg prediction across confs
−Best prediction by conf

The Avg prediction for the test 
set gives:
−MSE: 0.22



GRID MIF



Machine Learning and the GRID Force-Fields
We build PLS models, each model is related to a specific AT, to improve the quality of the 
Hydrogen-Bonding term  EHB that is the product of three terms terms:

● Er based on the distance between the target and the probe given in kcal/mol
● The other two, both ranging in the interval 0–1. They are dimensionless functions of the angles t and p made by the hydrogen bond 

(HB) at the target and the probe atoms respectively

Er assumes relative values in case of interaction with a HB acceptor or donor 
complementary probe and is parametrized by two values: Emin is the strongest 
hydrogen-bond attraction energy at the optimum position (Emin), and half 
of the straight-line distance between donor and acceptor atom pairs which 
corresponds to the strongest hydrogen-bond attraction energy (Rmin).

Sara Tortorella, Emanuele Carosati, Giovanni Bocci, Simon Cross, Gabriele Cruciani, Loriano 
Storchi, "Combining Machine Learning and Quantum Mechanics Yields More Chemically-Aware 
Molecular Descriptors for Medicinal Chemistry Applications", Journal of Computational 

Chemistry, DOI: 10.1002/jcc.26737 (2021)

Emin → dEmin



Machine Learning and the GRID Force-Fields
The dataset is made of 66463 drug-like molecules 

● We used GAMESS-US B3LYP/SVP (necessity of having a versatile basis set and method) to 
compute the Electrostatic Potential  (EP) for each atom

● EP is converted to the so called dEmin value using  linear equation derived so that for each AT 
all the resulting dEmin values always fall within an acceptable range

22 equations, each one for 
each AtomType

The dEmin is our label 



Machine Learning and the GRID Force-Fields

The red lines represent values of the traditional, static Emin of the GRID force field, namely -5.5 for N:= and  -4.0 for N1 atom 
types. dEmin, dynamic Emin

N1  Neutral flat NH eg amide (HB donor)N:=  sp2 N with lone pair (HB acceptor)



Machine Learning and the GRID Force-Fields
Does chemically sound to use the dEmin in the the EHB term ? 

We decided to test the correlation of 
the proposed dEmin to those 
experimental hydrogen-bonding (HB) 
properties.

dEmin versus H-bond basicity scale 
for the Kenny dataset (279 atoms, R 
– Pearson = 0.85). 



Machine Learning and the GRID Force-Fields
We have a good label, now we need to select the feature (descriptor) to use in the model
The molecular environment is described by a tree-structured molecular fingerprint with a 
length of 10 bond distances



Machine Learning and the GRID Force-Fields
Using this approach, 22 PLS models were built relating atomic environment to dEmin for 
the HB GRID atom types  (some of the models results are reported validated using 
leave-one-out crossvalidation)



Machine Learning and the GRID Force-Fields

FORTRAN 
PROGRAM 

FORTRAN  
LIBRARY 
WITH C 

AND C++ 
API 

C/C++ 
LIBRARY

Simpler way to 
use it in other 

projects

Dynamic 
memory 

allocation, 
thread safety

● pKa prediction for small molecules (and proteins)
● VolSurf, Almond and SHOP use molecular descriptors from 3D Molecular Interaction Fields (MIFs) 

produced by GRID
● MetaSite is a computational procedure that predicts metabolic transformations related to 

cytochrome-mediated reactions in phase I metabolism



Machine Learning and the GRID Force-Fields
● Easiest way is one thread for each probes (excellent speedup)
● One thread for each XY plane of the grid (big molecules)

Intel Xeon E5420 2.50GHz

# threads Speedup
1 1
2 1.91
3 2.81
4 3.74
5 4.57
6 5.43
7 6.38
8 7.33



FORMULA SEARCH 



 Formula search for crystal structure 
stability based on atomic properties.

 Uses basic atomic properties to 
construct material features.

 Employs machine learning methodology 
to construct formulas.

 The final result is a transparent, 
human-readable mathematical formula.

A Formula search



A Formula search

1D formulas, along with related statistics: avg(RMSE) denotes the root mean squared error for average over 1000 random 
train-test splits of dataset. Instead, the RMSE is the root mean squared error for the entire dataset as training and test. 
Similarly, the R2 values are calculated considering the entire dataset, and they show the quality of fit between predicted and 
actual values. The success rate (in percent) shows how many RS or ZB phases out of 82 have been correctly identified by the 
descriptor. The “Generator type” column indicates the different generators used to produce the corresponding formula. 
RMSEs are in eV.



A Formula search
The final outcome of our procedure is a transparent 
formula, not necessarily of easy mathematical 
formulation, but revealing which part of the input 
mostly affects the output, i.e., allowing the 
identification of the main driving physical feature

Interestingly, our results reveal the size of the A 
cation to play a leading role in the phase 
stabilization; in fact, the rp(A) radius appears in the 
best-performing formulas more frequently than the 
other basic atomic properties

Data fit functions are also shown, using 
proportionality to rp(A)-2 and rp(A)-3 via a green
dashed line and a red straight line, respectively.



SCORING FUNCTION



A Scoring Function

∆EFMO , F2LE, EINT and FE values computed for LR complexes formed by ligands 1–9 
and hCA II. All energy values are in kcal/mol.



A Scoring Function

Computed values for HIE, HIE-E (HIE/number of heavy atoms) and logP.


