
BERTHA and PyBERTHA: state of the art for
full four-component Dirac-Kohn-Sham

calculations
Loriano Storchi

University of Chieti-Pescara
Istituto di Scienze e Tecnologie Chimiche del CNR, Perugia

INFN (Istituto Nazionale Di Fisica Nucleare) sez. Perugia

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

Introduction
The eigenvalue equation reads:

The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals produced by
its diagonalization, so that the solution c must be obtained recursively to self-consistence.

Spinors expansion
vectors

Parallelization strategies
The matrix HDKS depends, because
of J and K, on the canonical
spinor-orbitals produced by its
diagonalization, so that the
solution c must be obtained
recursively to self-consistence.

Introduction
It is universally recognized that relativistic effects play a crucial role in
chemistry, especially for heavy elements

● The challenge clearly arises from the fact that heavy elements have a very
large number of electrons, and both relativistic effects and electron
correlation play a crucial role

● DKS matrices are big because of Large and Small components
● DKS matrices are inherently complex matrices

Introduction

Introduction
We employed density fitting techniques; what is the efficiency of the density fitting
approach?

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

Parallelization strategies
CPU time percentages for the
various phases of a serial DKS
calculation of the gold cluster
Au16 . All linear algebra
operations are performed with
the Intel Math Kernel Library. We
are here considering each SCF
step

Parallelization strategies
● According to Amdahl’s law, serial portion of code limits the speedup, thus we tried to

remove any single portion of serial code
● During the SCF procedure, in fact, the “bulk” memory allocation is due to

several 2N × 2N complex Hermitian matrices, we want to share the memory
burden

● We will use ScaLAPACK for linear algebra
● The parallelization strategy for the J+K construction, and similarly for all the others

matrices is induced by the problem (i.e., by the matrices structure)
● The strategy adopted for all the other matrices is basically tha same as for the J+K

Parallelization strategies
Integral Driven Distribution (IDD): Cyclically assigning to each
process the allocation and computation of blocks whose offsets and
dimensions depend on the specific structure of the G-spinor
matrices.

Parallelization strategies

Parallelization strategies
Set up an “info” array

Pack the owned data (along with the related
destination

Indices, so local indices) into the send-buffers

Allocates send buffer

Communicate

Deallocate send buffer

Communicate

Parallelization strategies
A similar strategy has been
adopted for the one electron and
superposition matrices

SUM alla matrices to
obtain HDKS

In the IDD scheme, instead , the distribution is
much less regular. A convenient and efficient
representation is obtained using a derived data
type, composed of a two-dimensional array and
some metadata describing its size and placement
in the global matrix. On each process, an array of
such derived data types is then used to identify
each local IDD block

Parallelization strategies
Wall-Clock Time in Seconds (Average over 4 SCF Cycles) Spent in the Distribution Mapping
Routines during Calculation

Parallelization strategies
Memory Per Process Peak (Average Value M av , Maximum Positive Δ + and Negative Δ − Deviations) in
MiB over P Processes

Parallelization strategies

Parallelization strategies
Speedup for all of the computational kernels of
the SCF procedure for Au32 as a function of the
number of processors P

Mccw cluster equipped with Intel(R) Xeon(R)
CPU E5-26700 2.60 GHz (24 nodes, 384 cores
with 128 GiB/node, 8 GiB/core) and Infiniband
network

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

A test application using NOCV/CD
● CD: Charge-Displacement analysis has been successfully employed to describe the nature of

intermolecular interactions and various type of controversial chemical bond
● Charge-Displacement function defined as a partial integration along a suitable z axis of the

difference ∆ρ(x, y , z’) between the electron density of the adduct and that of its
non-interacting fragments placed at the same equilibrium position they occupy in the adduct.

● The core idea of the approach is the decomposition, via natural orbitals for chemical valence
(NOCV), of the so-called charge-displacement (CD) function into additive Chemically
meaningful components.

A test application using NOCV/CD
The Au20 − Fl complex and the CD analysis for the bond

A test application using NOCV/CD

We are able to split the
total CD curve into several
chemically meaningful
additive components.

isodensity surfaces

red surfaces identify
charge depletion areas and
blue surfaces identify
charge accumulation

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

 PyBERTHA a Python binding for BERTHA

● Undoubtedly the Python programming language is emerging as one of the
most important and used HLL also in the field of scientific computing.

● Python HLL, besides providing an extensive range of modules to be used to
solve comprehensive set of computational problems, enables for a quick
prototyping

● So Python is clearly a natural choice for the BERTHA project.

 PyBERTHA a Python binding for BERTHA
An overview of the software and HLL layers.

 PyBERTHA a Python binding for BERTHA
A couple of Python
functions , and some
specific lines of code at the
bertha_wrapper/Fortran
layer, are need to
implement the data
movement between Python
to/from Fortran

 PyBERTHA a Python binding for BERTHA

 PyBERTHA a Python binding for BERTHA
Impact of the Python binding in the total execution time using 10 SCF iterations. The code
has been executed on a Intel(R) Xeon(R) CPU E3- 1220 compiling the code with the
Intel(R) compiler version: 2018.3.222

 PyBERTHA a Python binding for BERTHA
Impact of the Python binding in the berthamod.get_realtime_fock method.

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

 PyBERTHA a Python binding for BERTHA
● Parallel PyBERTHA

○ First option load the liberrthaparallelshm.so and after we can manage
MPI at python level using, for instance, mpi4py or similar modules

○ Other option is to use OpenMP, especially when one is interested in
improving the performances for small molecular systems
■ we adopted this strategies and the parallelization strategy

adopted for the J+k and other matrices construction is the same
as the MPI version, but within shared memory model

 PyBERTHA a Python binding for BERTHA
Small Systems OpenMP (multithreading) better or equivalent to
MPI

 PyBERTHA a Python binding for BERTHA
big Systems MPI better then OpenMP

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

PyBERTHART a real-time TDDFT implementation
We implemented a real-time
time-dependent four-component Dirac−
Kohn−Sham (RT-TDDKS) implementation
based on the BERTHA code.

Induced dipole moment in H2 molecule.
The representation of the external field
is also reported as a yellow line.

PyBERTHART a real-time TDDFT implementation

PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group
12 atoms (Zn,Cd,Hg) features
spin-forbidden transitions.

A proper relativistic framework is
needed in order to reproduce
forbidden transitions

We are here reporting the Zn
spectrum

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

GPU porting of the code

GPU
Tesla A100

CPU
Xeon Pl. 2.6 GHz
32 cores

1555
GiB/s

VRAM
64 GiB

200
GiB/s

 32 GiB/s

RAM
512 GiB

Nvfortran -O3 -acc=gpu
Cublas,cusolver for GPU
Openblas for CPU

GPU porting of the code Step 1: create and solve two linear
systems: Ad = v and Az = w

Step2: evaluate

GPU porting of the code

Au:Dyall VDZ
Openblas for CPU (serial)
Cublas for GPU
nvfortran compiler

Linear algebra is about
70% of the total cost in a
serial run.

Au16 (dim 12608):

Serial CPU 4761.1 sec
 GPU 14.7 sec

GPU porting of the code

44

JTT+KTT

Au16 (dim 12608): Serial CPU :1180 sec
 CPU (32 threads) : 62 sec
 GPU + CPU (32 threads) : 10 sec

GPU porting of the code

45

JTT+KTT

GPU porting of the code

46

JTT+KTT

GPU porting of the code

47

JTT+KTT

● BERTHA SOs are using OpenACC and
OpenMP, thay can be “almost easily”
called by th Python Layer

● C_WRAPPER particularly useful to
hide various Fortran compilers
differences

● NUMPY to CuPY quite easy porting of
the RT-TDDKS
○ Almost all the python module is

GPU only, clearly tharere are
several data movement
involved when calling BERTHA
SOs

GPU porting of the code

48

JTT+KTT

GPU porting of the code

49

JTT+KTT

Table of contents
● Introduction
● BERTHA parallelization strategies

○ A test application using NOCV/CD , the Au20-Fl case
● PyBERTHA a Python binding for BERTHA

○ OpenMP parallelization strategies
○ PyBERTHART a real-time TDDFT implementation in a

four-component relativistic framework
● GPU porting of the code
● Conclusions

Conclusions

● Improve the data locality on GPU
● MultiGPUs in combination with our open-ended parallel

implementation (use of ELPA library).

https://github.com/BERTHA-4c-DKS/

THANK YOU
Special thanks to:
● Leonardo Belpassi : collaboration on

the BERTHA project
● Matteo De Santis
● Laura Bellentani, Sergio Orlandini

(CINECA)
● Jeff Hammond (NVIDIA)

● PaGUSci - Parallelization and GPU Porting
of Scientific Codes within the Cascading
Call issued by ICSC , Spoke 3 Astrophysics
and Cosmos Observations.

● Italian Research Center on
High-Performance Computing, Big Data
and Quantum Computing

● GPU Hackathon event for technical
support and for awarding this project
accessto the LEONARDO supercomputer,
owned by the EuroHPC Joint Undertaking,
hosted by CINECA (Italy) and

Some references
● Loriano Storchi, Laura Bellentani, Jeff Hammond, Sergio Orlandini, Leonardo Pacifici, Nicolo' Antonini, Leonardo Belpassi, "Acceleration

of the Relativistic Diracâ€“Kohnâ€“Sham Method with GPU: A Pre-Exascale Implementation of BERTHA and PyBERTHA", Journal of Chemical
Theory Computation, DOI: 10.1021/acs.jctc.4c01759 (2025)

● Leonardo Belpassi, Matteo De Santis, Harry M. Quiney, Francesco Tarantelli, Loriano Storchi, "BERTHA: Implementation of a four-component
Dirac-Kohn-Sham relativistic framework", The Journal of Chemical Physics, DOI: 10.1063/5.0002831 (2020).

● M. De Santis, L. Storchi, L. Belpassi, H. M. Quiney, F. Tarantelli, "PyBERTHART: A Relativistic Real-Time Four-Component TDDFT
Implementation Using Prototyping Techniques Based on Python", Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.0c00053
(2020).

● Matteo De Santis, Leonardo Belpassi, Christoph R. Jacob, Andre' Severo Pereira Gomes, Francesco Tarantelli, Lucas Visscher, and Loriano
Storchi, "Environmental effects with Frozen Density Embedding in Real-Time Time-Dependent Density Functional Theory using localized basis
functions", Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.0c00603 (2020).

● Loriano Storchi, Matteo De Santis, Leonardo Belpassi, "BERTHA and PyBERTHA: State of the Art for Full Four-Component Dirac-Kohn-Sham
Calculations", Advances in Parallel Computing, Parallel Computing: Technology Trends, DOI: 10.3233/APC200060 (2019)

● De Santis M., Rampino S., Quiney H.M., Belpassi L., Storchi L. "Charge-displacement analysis via natural orbitals for chemical valence in
the four-component relativistic framework", Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.7b01077 (2018).

● S. Rampino, L. Belpassi, F. Tarantelli, and L. Storchi, "Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham
Program", Journal of Chemical Theory and Computation, DOI: 10.1021/ct500498m (2014).

● Loriano Storchi , Sergio Rampino , Leonardo Belpassi , Francesco Tarantelli , and Harry M. Quiney, "Efficient parallel all-electron
four-component Dirac-Kohn-Sham program using a distributed matrix approach.II", JCTC Journal of Chemical Theory and Computation, DOI:
10.1021/ct400752s (2013).

● L. Storchi, L. Belpassi, F. Tarantelli, A. Sgamellotti, H. M. Quiney, "An efficient parallel all-electron 4-component Dirac-Kohn-Sham
program using a distributed matrix approach". Journal of Chemical Theory and Computation, DOI: 10.1021/ct900539m (2010).

● L. Belpassi, L. Storchi, F. Tarantelli, H. M. Quiney, "Recent advances and perspectives in 4-component Dirac-Kohn-Sham calculations",
Physical Chemistry Chemical Physics, DOI: 10.1039/c1cp20569b (2011).

