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Introduction
The eigenvalue equation reads:

The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals produced by 
its diagonalization, so that the solution c must be obtained recursively to self-consistence.

 

Spinors expansion 
vectors



Parallelization strategies
The matrix HDKS depends, because 
of J and K, on the canonical 
spinor-orbitals produced by its 
diagonalization, so that the 
solution c must be obtained 
recursively to self-consistence.



Introduction
It is universally recognized that relativistic effects play a crucial role in 
chemistry, especially for heavy elements

● The challenge clearly arises from the fact that heavy elements have a very 
large number of electrons, and both relativistic effects and electron 
correlation play a crucial role

● DKS matrices are big because of Large and Small components 
● DKS matrices are inherently complex matrices



Introduction



Introduction
We employed density fitting techniques; what is the efficiency of the density fitting 
approach?
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Parallelization strategies
CPU time percentages for the 
various phases of a serial DKS 
calculation of the gold cluster 
Au16 . All linear algebra 
operations are performed with 
the Intel Math Kernel Library. We 
are here considering each SCF 
step



Parallelization strategies
● According to Amdahl’s law, serial portion of code limits the speedup, thus we tried to 

remove any single portion of serial code 
● During the SCF procedure, in fact, the “bulk” memory allocation is due to 

several 2N × 2N complex Hermitian matrices, we want to share the memory 
burden 

● We will use ScaLAPACK for linear algebra 
● The parallelization strategy for the J+K construction, and similarly for all the others 

matrices is induced by the problem (i.e., by the matrices structure)
● The strategy adopted for all the other matrices is basically tha same as for the J+K



Parallelization strategies
Integral Driven Distribution (IDD): Cyclically assigning to each 
process the allocation and computation of blocks whose offsets and 
dimensions depend on the specific structure of the G-spinor 
matrices. 
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Parallelization strategies
Set up an “info” array 

Pack the owned data (along with the related 
destination

Indices, so local indices) into the send-buffers

Allocates send buffer

Communicate

Deallocate send buffer 

Communicate



Parallelization strategies
A similar strategy has been 
adopted for the one electron and 
superposition matrices 

SUM alla matrices to 
obtain HDKS

In the IDD scheme, instead , the distribution is 
much less regular. A convenient and efficient 
representation is obtained using a derived data 
type, composed of a two-dimensional array and 
some metadata describing its size and placement 
in the global matrix. On each process, an array of 
such derived data types is then used to identify 
each local IDD block



Parallelization strategies
Wall-Clock Time in Seconds (Average over 4 SCF Cycles) Spent in the Distribution Mapping 
Routines during Calculation 



Parallelization strategies
Memory Per Process Peak (Average Value M av , Maximum Positive Δ + and Negative Δ − Deviations) in 
MiB over P Processes 
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Parallelization strategies
Speedup for all of the computational kernels of 
the SCF procedure for Au32 as a function of the 
number of processors P 

Mccw cluster equipped with Intel(R) Xeon(R) 
CPU E5-26700 2.60 GHz (24 nodes, 384 cores 
with 128 GiB/node, 8 GiB/core) and Infiniband 
network
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A test application using NOCV/CD
● CD: Charge-Displacement analysis has been successfully employed to describe the nature of 

intermolecular interactions and various type of controversial chemical bond
● Charge-Displacement function defined as a partial integration along a suitable z axis of the 

difference ∆ρ(x, y , z’) between the electron density of the adduct and that of its 
non-interacting fragments placed at the same equilibrium position they occupy in the adduct.

● The core idea of the approach is the decomposition, via natural orbitals for chemical valence 
(NOCV), of the so-called charge-displacement (CD) function into additive Chemically 
meaningful components.



A test application using NOCV/CD
The Au20 − Fl complex and the CD analysis for the bond 



A test application using NOCV/CD

We are able to split the 
total CD curve into several 
chemically meaningful 
additive components. 

isodensity surfaces 

red surfaces identify 
charge depletion areas and 
blue surfaces identify 
charge accumulation
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 PyBERTHA  a Python binding for BERTHA

● Undoubtedly the Python programming language is emerging as one of the 
most important and used HLL also in the field of scientific computing. 

● Python HLL, besides providing an extensive range of modules to be used to 
solve comprehensive set of computational problems, enables for a quick 
prototyping

● So Python is clearly a  natural choice for the BERTHA project.



 PyBERTHA  a Python binding for BERTHA
An overview of the software and HLL layers.



 PyBERTHA  a Python binding for BERTHA
A couple of Python 
functions , and some 
specific lines of code at the 
bertha_wrapper/Fortran 
layer, are need to 
implement the data 
movement between Python 
to/from Fortran 



 PyBERTHA  a Python binding for BERTHA



 PyBERTHA  a Python binding for BERTHA
Impact of the Python binding in the total execution time using 10 SCF iterations. The code 
has been executed on a Intel(R) Xeon(R) CPU E3- 1220 compiling the code with the 
Intel(R) compiler version: 2018.3.222



 PyBERTHA  a Python binding for BERTHA
Impact of the Python binding in the berthamod.get_realtime_fock method.
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 PyBERTHA  a Python binding for BERTHA
● Parallel PyBERTHA

○ First option load the liberrthaparallelshm.so and after we can manage 
MPI at python level using, for instance, mpi4py or similar modules

○ Other option is to use OpenMP, especially when one is interested in 
improving the performances for small molecular systems
■ we adopted this strategies and the parallelization strategy 

adopted for the J+k and other matrices construction is the same 
as the MPI version, but within shared memory model



 PyBERTHA  a Python binding for BERTHA
Small Systems OpenMP (multithreading) better or equivalent to 
MPI



 PyBERTHA  a Python binding for BERTHA
big Systems MPI better  then  OpenMP
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PyBERTHART a real-time TDDFT implementation
We implemented a real-time 
time-dependent four-component Dirac− 
Kohn−Sham (RT-TDDKS) implementation 
based on the BERTHA code.

Induced dipole moment in H2 molecule. 
The representation of the external field 
is also reported as a yellow line. 



PyBERTHART a real-time TDDFT implementation



PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group 
12 atoms (Zn,Cd,Hg) features 
spin-forbidden transitions.  

A proper relativistic framework is 
needed in order to reproduce 
forbidden transitions

We are here reporting the Zn 
spectrum
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GPU porting of the code

GPU
Tesla A100 

CPU
Xeon Pl. 2.6 GHz
32 cores

1555
GiB/s

VRAM
64 GiB

200
GiB/s

 32 GiB/s

RAM
512 GiB

Nvfortran -O3 -acc=gpu 
Cublas,cusolver for GPU
Openblas for CPU



GPU porting of the code Step 1: create and solve two linear 
systems: Ad = v and Az = w

Step2: evaluate 



GPU porting of the code

Au:Dyall VDZ
Openblas for CPU (serial)
Cublas for GPU
nvfortran compiler

Linear algebra is about 
70% of the total cost in a 
serial run.

Au16 (dim 12608):

Serial CPU  4761.1  sec
             GPU       14.7 sec



GPU porting of the code

44

JTT+KTT

Au16 (dim 12608):  Serial CPU                 :1180  sec
                                     CPU (32 threads) :    62  sec
                       GPU + CPU (32 threads)   :     10  sec



GPU porting of the code
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JTT+KTT



GPU porting of the code
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JTT+KTT



GPU porting of the code

47

JTT+KTT

● BERTHA SOs are using OpenACC and 
OpenMP, thay can be “almost easily” 
called by th Python Layer 

● C_WRAPPER particularly useful to 
hide various Fortran compilers 
differences 

● NUMPY to CuPY quite easy porting of 
the RT-TDDKS 
○ Almost all the python module is 

GPU only, clearly tharere are 
several data movement 
involved when calling BERTHA 
SOs



GPU porting of the code
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JTT+KTT



GPU porting of the code
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JTT+KTT
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Conclusions

● Improve the data locality on GPU
● MultiGPUs in combination with our open-ended parallel 

implementation (use of ELPA library).

https://github.com/BERTHA-4c-DKS/
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