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must be obtained recursively to self-consistence.
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solution ¢ must be obtained

. *l [T + v]ipp and [S]IDDI recursively to self-consistence.

1T+ v]ipp - [IT +v]pcp
(Slipp + [S]scp
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Cluster

DKSSize (J+K)conv ~ (J+K)g  Speed-up

1560 1.86-10° 7 4 251
3120 1.71-10% 44.1 388
6240 1.71-10° 296 578

12480  1.91-10° 2.16-10° 884

“ Extrapolated value.
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][ [ Parallelization strategies§

J+K matrix
Level shift
Diagonalization
Density

Serial 1.79




]Z / Parallelization strategies®

o According to Amdahl’s law, serial portion of code limits the speedup, thus we triedjto
remove any single portion of serial code
During the SCF procedure, in fact the “bulk” memory allocation is due to

| '~ matrices is induced by the problem (i.e., by the matrices structure)

»;;{ ‘ _ The strategy adopted for aII the other matr matrices is basically tha same as for the J+




Integral Driven Distribution (IDD): Cyclically assigning to each

process the allocation and computation of blocks whose offsets and

_ dimensions depend on the specific structure of the G-spinor
* matrices.

]Z / Parallelization strategies

DO block_num = 1, max_nom_of_block
oy e teee IF (( K+ ( ( £ )#my_block_num)) == bl )
- L., my_rank+{ (num_of _processors)*my_block_num)) == block_num
- LN 4 my_block_num = my_block_num + 1
3 a?’“ ALLOCATE block
B EMY
A L COMPUTE block
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loop on processes

if my turn then
make my 'info” array available to all and send packed data

else
allocate receive-buffers according to the ‘info” array
made available by the sender, receive and unpack data,
deallocate receive-buffers

end if

end loop
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A similar strategy has been

=i the |[DD scheme, instead , the distribution is

[IT + )ipp and [S]ipp

[+ )ipp - [IT + v]pcp
(Slipp -+ [SlBcp
SUM alla matrices to

obtain Hm(s

ot O ad

much less regular. A convenient and efficien
representation is obtained using a derived data
type, composed of a two-dimensional array and
some metadata describing its size and placement]
in the global matrix. On each process, an array of

such derived data types is then used to identif



Routines during Calculation \
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[(PhyP)Au(C,H,) " Aug Auyg Auy,
2 faco~mD fipp—~BcD fsco—~mD fiop—~Bcp fsco—~mD fiop—~Bcp faco—~mD fipp—BcD
St 4 0.70 0.57 0.74 0.60 3.5 246 2061 9.68
ki 8 8 039 0.36 041 0.38 1.85 1.46 9.09 622
- 16 021 025 022 024 096 098 596 372
32 0.20 0.24 021 0.25 0.73 0.87 295 332
64 0.35 0.38 0.36 0.40 0.82 1.00 2.55 327
128 (2.5%) 092 (2.3%) 0.86 (2.9%) 0.90 (2.8%) 0.88 1.50 1.64 323 4.02
256 (6.9%) 2.69 (6.6%) 2.56 (6.5%) 1.84 (7.4%) 2.11 (2.6%) 3.84 (2.4%) 3.64 6.10 6.69
“Percentages of the SCF iteration times are smaller than 1% in any case except where otherwise noted in parentheses. 7
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1. 8 [
[(PhyP)Au(C,H,)] Aug Auyg Auy,

P A_ M, A, A M, A, A M, A, A M, A,
37 M 1882 60 81 6214 46 126 23838 187

59 64 1303 71 54 3770 90 88 14106 232

1S 8 888 44 14 2124 23 8 7405 63

84 3 773 96 44 1499 85 83 4827 155

92 37 672 92 80 1167 80 64 2880 83

115 24 620 110 54 %1 81 48 2220 101

134 15 586 119 52 866 83 80 1942 92
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)[ / Parallelization strategi
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= level shift
« diagonalization
~- densi

—e—— total SCF

Speedup for all of the computational kernels of
the SCF procedure for Au., as a function of the
number of processors P

Mccw cluster equipped with Intel(R) Xeon(R)
CPU E5-26700 2.60 GHz (24 nodes, 384 cores

with 128 GiB/node, 8 GiB/core) and Infiniband







][/ test application using NOCV/CD
T VIET,

CD: Charge-Displacement analysis has been successfully employed to describe the nature of
intermolecular interactions and various type of controversial chemical bond
Charge-Displacement function defined as a partial integration along a suitable z axis of the
difference Ap(x, y , 7) between the electron density of the adduct and that of its
non-interacting fragments placed at the same equilibrium position they occupy in the adduct.

e The core idea of the approach is the decomposition, via natural orbitals for chemical valence
(NOCV), of the so-called charge-displacement (CD) function into additive Chemicall

P “meaningful components.

: i) 8 3 z 00 LoO
N Ag(z) :/ dz’/ / Ap(x,y, 2 )dxdy ,L




][ / A test application using NOGV/CD
TR VAT RS

he Au., - Fl complex and the CD analysis for the bond




test application using NOGV/CD

:{:“-: us *(h‘ :"” ‘We are able to split the

total CD curve into several
chemically meaningful

[ o412 Apy additive components.
% isodensity surfaces
w m w red surfaces
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e PyBERTHA a Python binding for BERTHA

OpenMP parallelization strategies




%/ PyBERTHA a Python binding for BERTHA
/ T I

Undoubtedly the Python programming language is emerging as one of the
most important and used HLL also in the field of scientific computing.

Python HLL, besides providing an extensive range of modules to be used to
solve comprehensive set of computational problems, enables for a quick

prototyping

'S0 Python is clearly a_natural choice for the BERTHA project.




PyBERTH a Python binding for BERTHA
== An overview of the software and HLL layers.

Y \
BERTHAMOD
C_WRAPPER
bertha_wrapper module
libertha.so libberthaserial.so | | libberthaparalleshm.so

PYTHON

C

FORTRAN



/ PyBERTHA a Python binding for BERTHA

.

PyBERTHA (python)

\

|

Main Python BERTHA class

)

doublevct_to_complexmat

| python function to map FORTRAN

arrays to numpy ones

Z\

complexmat_to_doublevct
python function to map numoy
arrays FORTRAN ones

bertha_wrapper.so -\7

[

C wrapper (C)

\

LSimple C wrapper to hide the FORTRANJ

calling sequence details

i

BERTHA SO library (FORTRAN) ]

FORTRAN

\L This is the BERTHA library developed in Jj

PRETS WO BT r
51 T .'f .'v

A couple of Python

functions , and some

bertha wrapperTFortran

|mplement the data

movement between Python
to/from Fortran

("



)[/ PyBERTHA a Python binding for BERTHA

Algorithm 2 A simple four-component relativistic DF'T' program implemented using the
berthamod Python module
1: import berthamod
Inputs: input options ...
bertha — berthamod.pybertha(wrapperso)
bertha.set verbosity(verbosity)
bertha.set fnameinput(inputfilename)
bertha.set fittfname(fittfilename)
bertha.set tresh(tresh)
bertha.init()
ovapmtx, eigenvectors, fockmtx, eigenvalues — bertha.run()
10: etotal — bertha.get etotal()
11: bertha.finalize()
12: Output: Total Energy and MO energies ...




PyBERTHA a Python binding for BERTHA

mpact of the Python binding in the total execution time using 10 SCF iterations. The code

as been executed on a Intel(R) Xeon(R) CPU E3- 1220 compiling the code with the
ntel(R) compiler version: 2018.3.222
: P J - i

Wall-time 10 SCF  Wall-time 10 SCF

Matrix . : 3 : Python overhead
7 System . . 1terations 1iterations . .
¢ Dimension ) ) 10 SCF iterations
with Python (s) without Python (s)
H,O 140 3.910 3.906 0.09 %
Zn 624 20.471 20.455 0.07 %
Cd 916 41.595 41.556 0.09 %
Hg 1240 97.046 96.975 0.07 %
Auy 1560 104.458 104.354 0.99 %
Auy 3152 613.912 613.483 0.07 %

Aug 6304 3965.911 3964.078 0.05 %



a Python binding for BERTHA

| - i 0
é’ Nt .V\-"all-t.:ime 10 SCF .\'Vall-Fime 10 SCF Pt overhisad
System Dimension 1terations 1terations 10 SCF iterations
o with Python (s) without Python (s) B
H,0O 140 0.383 0.382 0.19 %
Zn 624 1.257 1.250 0.52 %
Cd 916 2.592 2.575 0.64 %
Hg 1240 6.388 6.358 0.48 %
Au, 1560 6.395 6.294 1.59 %
Auy 3152 38.050 37.479 1.50 %
244.447 241.999 1.00 %

~I






PyBERTHA a Python binding for BERTHA
A

First option load the liberrthaparallelshm.so and after we can manage
MPI at python level using, for mstance mpi4py or similar modules

Other option is to use OpenMP especially when one is interested in
“improving the performances for small molecular systems

m Wwe adopted this strategies and the parallelization strateg




L f

7y ~
OpenMP MPI
System Step Serial 4 9 16 24 2X2 3X3 4X4 6X4
J+K matrix 0.67 0.17 0.12 0.09 0.09 0.28 0.26 0.24 0.26
Zn Linear algebra 0.21 0.15 0.14 0.15 0.13 0.15 0.16 0.14 0.18
Total iteration 2.33 0.60 0.44 0.38 0.36 0.52 0.50 0.45 0.50
J+K matrix 2.29 0.65 0.41 0.31 0.33 0.88 0.64 0.50 0.53
Hg Linear algebra 1.61 0.81 0.71 0.67 0.75 0.76 0.66 0.59 0.70
Total iteration 7.88 2.66 1.89 1.58 1.67 2.00 1.58 1.32 1.41
J+K matrix 3.53 1.08 0.61 0.46 0.39 1.15 0.85 0.71 0.69
Au; Linear algebra 3.36 1.63 1.31 1.12 0.84 1.45 1.22 1.03 1.22
Total iteration 9.83 3.81 2.74 2.32 1.95 297 245 2.12 2.23
i

e e e
e
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/PYBERTHA a Python binding for BERTHA

| ig Systems MPI better then OpenMP

OpenMP MPI
System Step Serial 4 9 16 24 2X2 3X3 4X4 6X4
J+K matrix 23.05 6.16 3.33 2.19 1.83 6.10 3.43 235 2.00
Auy Linear algebra 31.14 10.70 8.55 7.30 7.89 9.69 7.21 5.59 6.85
Total iteration 64.60 20.96 14.87 12.12 12.32 16.48 11.55 9.08 9.75
J+K matrix 158.93 42.17 21.67 13.26 10.45 42.56 20.94 12.30 9.30
Aug Linear algebra 265.60 90.66 66.05 60.95 65.22 39.57 54.55 37.23 42.51
Total iteration 469.76 149.84 99.96 84.74 86.08 86.55 75.83 52.05 53.78
J+K matrix 1185.56 314.07 153.99 91.73 70.50 308.19 149.13 85.90 65.78
Aus Linear algebra 2303.85 679.51 498.07 424.99 414.06 540.20 388.93 270.34 327.72

Total iteration 3687.16 1069.80  703.74 561.42 528.04 797.21 516.11 352.81 390.62

LR




o PyBERTHART a real-time TDDFT implementation in a
four- component relativistic framework
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)[/ PyBERTHART a real-time TDDFT implementation

We implemented a real-time
time-dependent four-component Dirac-
Kohn-Sham (RT-TDDKS) implementation
based on the BERTHA code.jy

Induced dipole moment in H, molecule.
The representation of the external field




7[ [PYBERTHART 2

real-time TDDFT implementation

{ reference RT-TDDFT
_ ' ( Psi4Numpy Numpy 1
:u i f\' 5: g Oy j
e - Y N

|core.MoIecuIe geometry parsing, manip. I

|core.BasIsSet gbs parsing, aux selection, manip.l

|core.MlntsI-leIper 1&2¢ ints, transformations

|core.VBase DFT functional |

Psi4

/

C++/Python Library )
>

reference 4c-RT-TDDFT

l

PyBertha ‘ [ Numpy

- - -

 |pybertha.init initialization |

|pybertha.realtime_lnlt real-time variables ]

Ipybenha.get_realtlme_fock Fock matrix ]

|pybertha.get_realtime_dipole_matrix dip. matrix |

BERTHA
FORTRAN/C/Python

\ Library

=




;( PyBERTHART a

T
Zn SVWNS5/Def2-svpd]

05 | Detailed view
‘so - ‘p’ 0.0015

0.001 |-
04 -

0.0005

03 |

real-time TDDFT implementation

The absorption spectrum of group
12 atoms (Zn,CdHg) features
spin-forbidden transitions.

A proper relativistic framework is
needed in order to reproduce
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VTT,STT CPU CPU ¥ GPU

{

VRAM

64 GiB

(i
V)

H sl OpenMP OpenACC Al ) RAM

512 GiB
b

Step 1 - », Step 2 JTT+K 200
‘ \ Dens. fit ] V| Dens. fit J GiB/S

CPU GPU
Xeon PI. 2.6 GHz Tesla A100

32 cores

Lev. Sh. | Linear
Diag. |algebra

GPU openacc/cublas/cusolver




][ porting of the code

/

¥ 4 Step 1: create and solve two linea
systems: Ad =vand Az=w

V.S apy | | CPU +

i

N

Step 1
Dens. fit

N =

OpenMP OpenACC

J

GPU

OpenMP \ \
o ’ Etepzf J%\

| . fit
/ ‘ ens. fi J

Lev. Sh.
\ Diag.

GPU OpenACC/cublas/cusolver

algebra



Upénblas for CPU(serlaI)
Cublas for GPURS

Speedup

300

200

100

0

Au:

Aus

AuUs

AUis




){ ortng of the code
T S
CPU + GPU

s Openmp OpenACC 7’
i, Step 2

Bonis fit 9 2K

k Y,

OpenACC/OpenMP (GPU + CPU) vs CPU (32 Threads)

Au2 Au4 Au8 Au16

This step isabout 20%
of the total costina
serial run.




a OpenACC/OpenMP (GPU + CPU) vs OpenMP CPU (32 Threads)

Au, (dim12608):
30

Serial CPU :6045 sec
CPU (#32) : 893 sec
GPU+CPU(#32): 31 sec

~—

Numerical stability

#1 :-38089.88730963261 ‘
#32 :-38089.88730963165
GPU : -38089.88730963576

Au8 Au16 }n/
. .} ’ V
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Speedup

250
200
150
100
50
0

1 A S .:\A.‘" .

B 4 Threads B 8 Threads 16 Threads W 32 Threads

Au,,

Au

Au

Au

J+K Tot. J+K Tot. J+K Tot. J+K Tot.



{ GPU porting of the code/ g

BERTHA SOs are using OpenACC and

PyBERTHA-RT Python *\ OpenMP, thay can be “almost easily”
PYBERTHA ——
algebra
C wrapper CH for time
propagator.
To hide the FORTRAN calling sequence of
diffe@nteompilets ‘ Pl
H.. {D | (Cupy)
(SO library) [, ; . GPU only, clearly tharere are
GPU+CPU ‘ several data movement

(OpenACC/OpenMP) | involved when calling BERTHA®
e g o {[S0s




CPU+GPU vs CPU

12 Au_(dim 6304):

Openmp/Numpy
CPU(#32) : 835 sec

Openmp/OpenACC/Cupy
GPU+CPU(#32): 80 sec

RT-TDDKS for Au, (15 sec

per time step) can be
done in days instead of

weeks!! 7 |
Aud Au8 r r—: VAW




OpenMP

Other operations (%)

5 1% Other operations (%)
31.0%

Matrix exp (%)

Compute HDKS (%)

31 0% Compute HDKS (%)
34 9%

Cupy OpenMP/ACC

Matrix exp (%)

9.8%

Other operations (%)
20.9%

Compute HDKS (%)

Matrix exp (%)






https://github.com/BERTHA-4c-DKS.

GitHub - Y N B
%
mprove the data locality on GPU

~implementation (use of ELPA library).
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