
BERTHA and PyBERTHA: state of the art for
full four-component Dirac-Kohn-Sham

calculations

Loriano Storchi , Matteo De Santis, Leonardo Belpassi

University of Chieti-Pescara, University of Perugia, ISTM-CNR

ParCo2019

Table of contents
● Introduction
● BERTHA parallelization strategies
● PyBERTHA a Python binding for BERTHA
● Examples and applications

○ A test application using NOCV/CD , the Au20-Fl case
○ PyBERTHART a real-time TDDFT implementation in a four-component relativistic

framework
● Conclusions

Introduction

Introduction
It is universally recognized that relativistic effects play a crucial role in
chemistry, especially for heavy elements

● The challenge clearly arises from the fact that heavy elements have a very
large number of electrons, and both relativistic effects and electron
correlation play a crucial role

● A particularly suitable and promising theoretical framework to
appropriately treat these systems is the Dirac−Kohn−Sham model (DKS)

Introduction
The DKS equation reads:

Where there is the speed of light in vacuum, the electron four-momentum and the Pauli
2x2 spin matrices

Introduction
As for the nonrelativistic case the potential term is made of: nuclear potential, Coulomb
interaction and the exchange-correlation term:

Where clearly in the last two terms the relativistic electronic density appear

A proper and genuine expression for the exchange-correlation functional is still missed

Introduction
The four-spinor solution of the DKS equation is expressed in BERTHA as a linear
combination of 2N G-spinor basis functions:

Where L identify the large component and S the small one

Due to presence of the Large and Small
components the basis set is doubled with
respect to a non-relativistic or a
two-component calculation.

Introduction
Finally the matrix representation of the DKS operator in the G-spinor basis is (Complex
arithmetic):

Coulomb potential

Coulomb
potential

Exchange-correlation
potential

Overlap matrixKinetic energy
operator matrix

Nuclear potential

Introduction
The associated eigenvalue equation reads:

The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals produced by
its diagonalization, so that the solution c must be obtained recursively to self-consistence.

Spinors expansion
vectors

Introduction
Which matrix depends on density which is not

G-spinor overlap
densities

where the sum runs over the
occupied positive-energy states

Introduction
● The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals

produced by its diagonalization, so that the solution c must be obtained recursively to
self-consistence.

● As in the nonrelativistic context, once a guess density has been provided (usually
cast as a superposition of atomic densities),

● The problem formally reduces to the evaluation (manly J and K) of the integrals
in previous equations for the assembling of HDKS and the iterative solution of
the eigenvalue problem (diagonalization) with up-to-date J and K integrals at
each cycle.

Introduction
● The J and the K matrix construction scales respectively as O(N4) and O(N 3) with

respect the number of atoms.
● We take advantage of the of density fitting techniques for an efficient evaluation of

the Coulomb J and exchange-correlation K matrices
● The relativistic electronic density is expanded in a set of Naux auxiliary

atom-centered functions:

Introduction
This allows for an efficient construction of the J and K matrices in a single step

Where the vectors d an z are the solution of two small and real NAUX X NAUX linear
equation systems.

Introduction
How efficient is the density fitting approach ?

BERTHA parallelization strategies

Parallelization strategies
● According to Amdahl’s law, serial portion of code limits the speedup, thus we tried

to remove any single potion os serial code
● During the SCF procedure, in fact, the “bulk” memory allocation is due to

several 2N × 2N complex Hermitian matrices:
○ the overlap matrix S
○ the one-electron matrix
○ the Coulomb plus exchange-correlation matrix J + K
○ the matrix of the eigenvectors
○ the density matrix

Parallelization strategies
A similar strategy has been
adopted for the one electron and
superposition matrices

Parallelization strategies
CPU time percentages for the
various phases of a serial DKS
calculation of the gold cluster
Au16 . All linear algebra
operations are performed with
the Intel Math Kernel Library. We
are here considering each SCF
step

Parallelization strategies
● ScaLAPACK has been used for all the linear algebra

○ P processes of a generic parallel execution are mapped onto a P r × P c
two-dimensional “process grid”

○ Each dense matrix is then decomposed into blocks of suitable size according to
a specific the so-called Block Cyclic Distribution (BCD)

● We clearly need some efficient way to distribute our matrices among the processes
according to the BCD scheme, so that linear algebra operations can be carried out by
ScaLAPACK routines in parallel

Parallelization strategies
● J + K matrix parallelization strategy (using MPI)

○ An efficient parallel construction of the matrix J + K has been achieved by
cyclically assigning to each process the allocationand computation of blocks
whose offsets and dimensions depend on the specific structure of the G-spinor
matrices.

○ We will refer as to Integral Driven Distribution (IDD), is naturally dictated by the
grouping of G-spinor basis functions in sets characterized by common origin and
angular momentum

Parallelization strategies
Integral Driven Distribution (IDD): Cyclically assigning to each
process the allocation and computation of blocks whose offsets and
dimensions depend on the specific structure of the G-spinor
matrices.

Parallelization strategies

Parallelization strategies
setup an “info” array

Pack the owned data (along with the related
destination

Indices, so local indices) into the send-buffers

Allocates send buffer

Communicate

Deallocate send buffer

Communicate

Parallelization strategies
A similar strategy has been
adopted for the one electron and
superposition matrices

SUM alla matrices to
obtain HDKS

In the IDD scheme, instead , the distribution is
much less regular. A convenient and efficient
representation is obtained using a derived data
type, composed of a two-dimensional array and
some metadata describing its size and placement
in the global matrix. On each process, an array of
such derived data types is then used to identify
each local IDD block

Parallelization strategies
Wall-Clock Time in Seconds (Average over 4 SCF Cycles) Spent in the Distribution Mapping
Routines during Calculation

Parallelization strategies
Memory Per Process Peak (Average Value M av , Maximum Positive Δ + and Negative Δ − Deviations)
in MiB over P Processes

Parallelization strategies

Parallelization strategies
Speedup for all of the computational kernels of
the SCF procedure for Au32 as a function of the
number of processors P

Mccw cluster equipped with Intel(R) Xeon(R)
CPU E5-26700 2.60 GHz (24 nodes, 384 cores
with 128 GiB/node, 8 GiB/core) and Infiniband
network

Parallelization strategies
Speedup for the J + K computation kernel for
Au16 as a function of the number of processors
P

FERMI located at CINECA, Italy and equipped
with IBM PowerA2 1.6 GHz (10240 nodes,
163840 cores with 16 GiB/node, 1GiB/core) and
a 11 links → 5D Torus network interface.

PyBERTHA a Python binding for BERTHA

 PyBERTHA a Python binding for BERTHA

● Undoubtedly the Python programming language is emerging as one of the most
important and used HLL also in the field of scientific computing.

● Python HLL, besides providing an extensive range of modules to be used to solve
comprehensive set of computational problems, enables for a quick prototyping

● So Python is clearly a natural choice for the BERTHA project.

 PyBERTHA a Python binding for BERTHA
An overview of the software and HLL layers.

 PyBERTHA a Python binding for BERTHA
module bertha_wrapper
use, intrinsic :: iso_c_binding
…
subroutine bertha_main(fittcoefffname, vctfilename, ovapfilename,
 fittfname, eigen, ovap_ptr, eige_ptr,
 fock_ptr)

implicit none

real (c_double) :: eigen(*)
...

 PyBERTHA a Python binding for BERTHA
#ifdef USEINTELCMP
...
#define f_bertha_main bertha_wrapper_mp_bertha_main_
...
#else
...
#define f_bertha_main __bertha_wrapper_MOD_bertha_main
...
#endif
...
void f_bertha_main (char *, char *, char *, char *, double *, double *,
 double *, double *, int, int, int, int);
…

…
int mainrun(char * fittcoefffname, char * vctfilename,
 char * ovapfilename, char * fittfname, double * eigen,
 double * ovapin, double * eigenv, double * fockin)
{
 f_bertha_main(fittcoefffname, vctfilename,
 ovapfilename, fittfname, eigen, ovapin, eigenv, fockin,
 strlen(fittcoefffname), strlen(vctfilename), strlen(ovapfilename),
 strlen(fittfname));
...

 PyBERTHA a Python binding for BERTHA
...
class pybertha:

 def __init__(self, sopath="./bertha_wrapper.so"):
 """
 param: sopath is needed to specify the
 bertha_wrapper Shared Object file.
 """
 soname = sopath
 if (not os.path.isfile(soname)):
 raise Error("SO %s does not exist" % soname)

 self.__bertha = ctypes.cdll.LoadLibrary(soname)

 self.__reset()
...

 PyBERTHA a Python binding for BERTHA

...
 def run(self):
 """
 This is the method to perform the SCF computation.
 """

 if self.__init:
 ndim = self.get_ndim()

 eigen = numpy.zeros(ndim, dtype=numpy.double)
 eigen = numpy.ascontiguousarray(eigen, dtype=numpy.double)

 ….

 PyBERTHA a Python binding for BERTHA
...
 main= threading.Thread(target=self.__bertha.mainrun, \
 args=[in_fittcoefffname, \
 in_vctfilename, \
 in_ovapfilename, \
 in_fittfname, \
 ctypes.c_void_p(eigen.ctypes.data), \
 ctypes.c_void_p(ovapbuffer.ctypes.data), \
 ctypes.c_void_p(eigenvctbu.ctypes.data), \
 ctypes.c_void_p(fockbuffer.ctypes.data)])
 maint.daemon = True
 maint.start()
 while maint.is_alive():
 maint.join(.1)
 eigem = doublevct_to_complexmat (eigenvctbu, ndim)
 if eigem is None:
 raise Error("Error in ovap matrix size"

 PyBERTHA a Python binding for BERTHA
def complexmat_to_doublevct (inm):

 if len(inm.shape) != 2:
 return None

 if inm.shape[0] != inm.shape[1]:
 return None

 dim = inm.shape[0]

 cbuffer = numpy.zeros((2*dim*dim), dtype=numpy.double)
 cbuffer = numpy.ascontiguousarray(cbuffer, dtype=numpy.double)

 cbuffer[0::2] = inm.flatten().real
 cbuffer[1::2] = inm.flatten().imag

 return cbuffer

 PyBERTHA a Python binding for BERTHA

def doublevct_to_complexmat (invector, dim):

 if (invector.size != (2*dim*dim)):
 return None

 outm = numpy.zeros((dim,dim), dtype=numpy.complex128)

 inmtxreal = numpy.reshape(invector[0::2], (dim,dim))
 inmtximag = numpy.reshape(invector[1::2], (dim,dim))
 outm[:,:] = inmtxreal[:,:] + 1j * inmtximag[:,:]

 return outm

 PyBERTHA a Python binding for BERTHA

 PyBERTHA a Python binding for BERTHA
Impact of the Python binding in the total execution time using 10 SCF iterations. The code
has been executed on a Intel(R) Xeon(R) CPU E3- 1220 compiling the code with the
Intel(R) compiler version: 2018.3.222

 PyBERTHA a Python binding for BERTHA
Impact of the Python binding in the berthamod.get_realtime_fock method.

 PyBERTHA a Python binding for BERTHA
● Parallel PyBERTHA

○ First option load the liberrthaparallelshm.so and after we can manage MPI at
python level using mpi4py

○ An other option is to use OpenMP, especially when one is interested in improving
the performances for small molecular systems

 PyBERTHA a Python binding for BERTHA

OpenMP palatalization run
on Intel(R) Xeon(R) CPU
E5-2695 v4 @ 2.10GHz

 PyBERTHA a Python binding for BERTHA
OpenMP palatalization run
on Intel(R) Xeon(R) CPU
E5-2695 v4 @ 2.10GHz

 PyBERTHA a Python binding for BERTHA
OpenMP palatalization run
on Intel(R) Xeon(R) CPU
E5-2695 v4 @ 2.10GHz

Examples and applications

A test application using NOCV/CD
● CD: Charge-Displacement analysis has been successfully employed to describe the nature of

intermolecular interactions and various type of controversial chemical bond
● Charge-Displacement function defined as a partial integration along a suitable z axis of the

difference ∆ρ(x, y , z’) between the electron density of the adduct and that of its
non-interacting fragments placed at the same equilibrium position they occupy in the adduct.

A test application using NOCV/CD

A test application using NOCV/CD
● The core idea of the approach is the decomposition, via natural orbitals for chemical valence

(NOCV), of the so-called charge-displacement (CD) function into additive Chemically
meaningful components.

A test application using NOCV/CD
The Au20 − Fl complex and the CD analysis for the bond

PyBERTHART a real-time TDDFT implementation
The time-dependent equation for Hartee-Fock and density functional theory can be reformulated in
terms of the Liouville-von Neumann (LvN) equation. In an orthonormal basis set the LvN equation
reads:

D(t) and F (t) are the one-electron density matrix and time-dependent Fock matrix respectively

PyBERTHART a real-time TDDFT implementation
The solution we are seeking for the density matrix reads as:

Within a small time step ∆t, the time evolution operator U is defined according to the exponential
midpoint rule as:

A finite time propagation is carried out by repeatedly applying thepropagator in each time step.

PyBERTHART a real-time TDDFT implementation
Induced dipole moment in H2 molecule.
The representation of the external field
is also reported as a yellow line.

PyBERTHART a real-time TDDFT implementation

PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group
12 atoms (Zn,Cd,Hg) features
spin-forbidden transitions.

A proper relativistic framework is
needed in order to reproduce
forbidden transitions

PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group
12 atoms (Zn,Cd,Hg) features
spin-forbidden transitions.

A proper relativistic framework is
needed in order to reproduce
forbidden transitions

PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group
12 atoms (Zn,Cd,Hg) features
spin-forbidden transitions.

A proper relativistic framework is
needed in order to reproduce
forbidden transitions

Conclusions

Conclusions
● We improved and extended the usability of the software both in term of user

experience (PyBERTHA) and in terms of molecular system dimensions the user ia
able to deal with (Parallelization)

● Full parallel implementation of the DKS module of the program BERTHA featuring (i)
no serial portions of code and (ii) a complete distributed memory approach. Indeed,
all-electron four-component DKS calculations on systems as costly as the Au32 gold
cluster, with more than 25 000 basis functions are now feasible with BERTHA
provided that a minimal amount of memory per core (as small as 2 GiB) is available

● It is now easy to extend the API as needed. In a future coming version we are
planning to add all the fundamental functions to specify the input geometry and
basis set in a more user-friendly (i.e. pythonic) way.

REHE2020

13-th International Conference on Relativistic Effects in
Heavy-Element Chemistry and Physics

https://www.rehe2020.it/

