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Introduction
It is universally recognized that relativistic effects play a crucial role in 
chemistry, especially for heavy elements

● The challenge clearly arises from the fact that heavy elements have a very 
large number of electrons, and both relativistic effects and electron 
correlation play a crucial role

● A particularly suitable and promising theoretical framework to 
appropriately treat these systems is the Dirac−Kohn−Sham model (DKS)



Introduction
The DKS equation reads:

Where there is the speed of light in vacuum, the electron four-momentum and the Pauli 
2x2 spin matrices   



Introduction
As for the nonrelativistic case the potential term is made of: nuclear potential, Coulomb 
interaction and the exchange-correlation term:

Where clearly in the last two terms the relativistic electronic density appear 

A proper and genuine expression for the exchange-correlation functional is still missed 

 



Introduction
The four-spinor solution of the DKS equation is expressed in BERTHA as a linear 
combination of 2N G-spinor basis functions:

Where L identify the large component and S the small one 

 

Due to presence of the Large and Small 
components the basis set is doubled with 
respect to a non-relativistic or a 
two-component calculation.



Introduction
Finally the matrix representation of the  DKS operator in the G-spinor basis is (Complex 
arithmetic):

Coulomb potential

Coulomb 
potential

Exchange-correlation 
potential 

Overlap matrixKinetic energy 
operator matrix

Nuclear potential  



Introduction
The associated eigenvalue equation reads:

The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals produced by 
its diagonalization, so that the solution c must be obtained recursively to self-consistence.

 

Spinors expansion 
vectors



Introduction
Which matrix depends on density which is not

 

G-spinor overlap 
densities

where the sum runs over the 
occupied positive-energy states



Introduction
● The matrix HDKS depends, because of J and K, on the canonical spinor-orbitals 

produced by its diagonalization, so that the solution c must be obtained recursively to 
self-consistence. 

● As in the nonrelativistic context, once a guess density has been provided (usually 
cast as a superposition of atomic densities),

● The problem formally reduces to the evaluation (manly J and K) of the integrals 
in previous equations for the assembling of HDKS and the iterative solution of 
the eigenvalue problem (diagonalization) with up-to-date J and K integrals at 
each cycle. 



Introduction
● The J and the K matrix construction scales respectively as O(N4) and O(N 3 ) with 

respect the number of atoms.
● We take advantage of the of density fitting techniques for an efficient evaluation of 

the Coulomb J and exchange-correlation K matrices
● The relativistic electronic density is expanded in a set of Naux auxiliary 

atom-centered functions:



Introduction
This allows for an efficient construction of the J and K matrices in a single step

Where the vectors d an z are the solution of two small and real NAUX X NAUX linear 
equation systems. 



Introduction
How efficient is the density fitting approach ?



BERTHA parallelization strategies 



Parallelization strategies
● According to Amdahl’s law, serial portion of code limits the speedup, thus we tried 

to remove any single potion os serial code 
● During the SCF procedure, in fact, the “bulk” memory allocation is due to 

several 2N × 2N complex Hermitian matrices: 
○ the overlap matrix S
○ the one-electron matrix 
○ the Coulomb plus exchange-correlation matrix J + K
○ the matrix of the eigenvectors
○ the density matrix



Parallelization strategies
A similar strategy has been 
adopted for the one electron and 
superposition matrices 



Parallelization strategies
CPU time percentages for the 
various phases of a serial DKS 
calculation of the gold cluster 
Au16 . All linear algebra 
operations are performed with 
the Intel Math Kernel Library. We 
are here considering each SCF 
step



Parallelization strategies
● ScaLAPACK has been used for all the linear algebra  

○ P processes of a generic parallel execution are mapped onto a P r × P c 
two-dimensional “process grid” 

○ Each dense matrix is then decomposed into blocks  of suitable size according to 
a specific the so-called Block Cyclic Distribution (BCD)

● We clearly need some efficient way to distribute our matrices among the processes 
according to the BCD scheme, so that linear algebra operations can be  carried out by 
ScaLAPACK routines in parallel



Parallelization strategies
● J + K matrix parallelization strategy (using MPI)

○ An efficient parallel construction of the matrix J + K has been achieved by 
cyclically assigning to each process the allocationand computation of blocks 
whose offsets and dimensions depend on the specific structure of the G-spinor 
matrices. 

○ We will refer as to Integral Driven Distribution (IDD), is naturally dictated by the 
grouping of G-spinor basis functions in sets characterized by common origin and 
angular momentum



Parallelization strategies
Integral Driven Distribution (IDD): Cyclically assigning to each 
process the allocation and computation of blocks whose offsets and 
dimensions depend on the specific structure of the G-spinor 
matrices. 
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Parallelization strategies
setup an “info” array 

Pack the owned data (along with the related 
destination

Indices, so local indices) into the send-buffers

Allocates send buffer

Communicate

Deallocate send buffer 

Communicate



Parallelization strategies
A similar strategy has been 
adopted for the one electron and 
superposition matrices 

SUM alla matrices to 
obtain HDKS

In the IDD scheme, instead , the distribution is 
much less regular. A convenient and efficient 
representation is obtained using a derived data 
type, composed of a two-dimensional array and 
some metadata describing its size and placement 
in the global matrix. On each process, an array of 
such derived data types is then used to identify 
each local IDD block



Parallelization strategies
Wall-Clock Time in Seconds (Average over 4 SCF Cycles) Spent in the Distribution Mapping 
Routines during Calculation 



Parallelization strategies
Memory Per Process Peak (Average Value M av , Maximum Positive Δ + and Negative Δ − Deviations) 
in MiB over P Processes 



Parallelization strategies



Parallelization strategies
Speedup for all of the computational kernels of 
the SCF procedure for Au32 as a function of the 
number of processors P 

Mccw cluster equipped with Intel(R) Xeon(R) 
CPU E5-26700 2.60 GHz (24 nodes, 384 cores 
with 128 GiB/node, 8 GiB/core) and Infiniband 
network



Parallelization strategies
Speedup for the J + K computation  kernel for 
Au16 as a function of the number of processors 
P 

FERMI located at CINECA, Italy and equipped 
with IBM PowerA2 1.6 GHz (10240 nodes, 
163840 cores with 16 GiB/node, 1GiB/core) and 
a 11 links → 5D Torus network interface.
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 PyBERTHA  a Python binding for BERTHA

● Undoubtedly the Python programming language is emerging as one of the most 
important and used HLL also in the field of scientific computing. 

● Python HLL, besides providing an extensive range of modules to be used to solve 
comprehensive set of computational problems, enables for a quick prototyping

● So Python is clearly a  natural choice for the BERTHA project.



 PyBERTHA  a Python binding for BERTHA
An overview of the software and HLL layers.



 PyBERTHA  a Python binding for BERTHA
module bertha_wrapper
use, intrinsic :: iso_c_binding
…
subroutine bertha_main(fittcoefffname, vctfilename, ovapfilename,
                           fittfname, eigen, ovap_ptr, eige_ptr, 
                           fock_ptr) 

implicit none

real (c_double) :: eigen(*)
...



 PyBERTHA  a Python binding for BERTHA
#ifdef USEINTELCMP
...
#define f_bertha_main bertha_wrapper_mp_bertha_main_
...
#else
...
#define f_bertha_main __bertha_wrapper_MOD_bertha_main
...
#endif
...
void f_bertha_main (char *, char *, char *, char *,  double *, double *, 
    double *, double *, int, int, int, int);
…

…
int mainrun(char * fittcoefffname, char * vctfilename, 
    char * ovapfilename, char * fittfname, double * eigen,
    double * ovapin, double * eigenv, double * fockin)
{
  f_bertha_main(fittcoefffname, vctfilename, 
        ovapfilename, fittfname, eigen, ovapin, eigenv, fockin,
        strlen(fittcoefffname), strlen(vctfilename), strlen(ovapfilename), 
        strlen(fittfname));
...



 PyBERTHA  a Python binding for BERTHA
...
class pybertha:
    
    def __init__(self, sopath="./bertha_wrapper.so"):
        """
        param: sopath is needed to specify the 
        bertha_wrapper Shared Object file.
        """
        soname = sopath
        if (not os.path.isfile(soname) ):
            raise Error("SO %s  does not exist" % soname)

        self.__bertha = ctypes.cdll.LoadLibrary(soname)
        
        self.__reset()
...



 PyBERTHA  a Python binding for BERTHA

...
    def run(self):
        """
        This is the method to perform the SCF computation.
        """

        if self.__init:
            ndim = self.get_ndim()

            eigen = numpy.zeros(ndim, dtype=numpy.double)
            eigen = numpy.ascontiguousarray(eigen, dtype=numpy.double)

           ….



 PyBERTHA  a Python binding for BERTHA
...
           main= threading.Thread(target=self.__bertha.mainrun, \
                    args=[in_fittcoefffname, \
                          in_vctfilename, \
                          in_ovapfilename, \
                          in_fittfname, \
                          ctypes.c_void_p(eigen.ctypes.data), \
                          ctypes.c_void_p(ovapbuffer.ctypes.data), \
                          ctypes.c_void_p(eigenvctbu.ctypes.data), \
                          ctypes.c_void_p(fockbuffer.ctypes.data)])
            maint.daemon = True
            maint.start()
            while maint.is_alive():
                    maint.join(.1)  
            eigem = doublevct_to_complexmat (eigenvctbu, ndim)
            if eigem is None:
                raise Error("Error in ovap matrix size"



 PyBERTHA  a Python binding for BERTHA
def complexmat_to_doublevct (inm):

    if len(inm.shape) != 2:
        return None

    if inm.shape[0] != inm.shape[1]:
        return None

    dim = inm.shape[0]
    
    cbuffer = numpy.zeros((2*dim*dim), dtype=numpy.double)
    cbuffer = numpy.ascontiguousarray(cbuffer, dtype=numpy.double)

    cbuffer[0::2] = inm.flatten().real
    cbuffer[1::2] = inm.flatten().imag

    return cbuffer



 PyBERTHA  a Python binding for BERTHA

def doublevct_to_complexmat (invector, dim):

    if (invector.size != (2*dim*dim)):
        return None

    outm = numpy.zeros((dim,dim), dtype=numpy.complex128)

    inmtxreal = numpy.reshape(invector[0::2], (dim,dim))
    inmtximag = numpy.reshape(invector[1::2], (dim,dim))
    outm[:,:] = inmtxreal[:,:] + 1j * inmtximag[:,:]

    return outm
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 PyBERTHA  a Python binding for BERTHA
Impact of the Python binding in the total execution time using 10 SCF iterations. The code 
has been executed on a Intel(R) Xeon(R) CPU E3- 1220 compiling the code with the 
Intel(R) compiler version: 2018.3.222



 PyBERTHA  a Python binding for BERTHA
Impact of the Python binding in the berthamod.get_realtime_fock method.



 PyBERTHA  a Python binding for BERTHA
● Parallel PyBERTHA

○ First option load the liberrthaparallelshm.so and after we can manage MPI at 
python level using mpi4py

○ An other option is to use OpenMP, especially when one is interested in improving 
the performances for small molecular systems



 PyBERTHA  a Python binding for BERTHA

OpenMP palatalization run 
on Intel(R) Xeon(R) CPU 
E5-2695 v4 @ 2.10GHz 
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A test application using NOCV/CD
● CD: Charge-Displacement analysis has been successfully employed to describe the nature of 

intermolecular interactions and various type of controversial chemical bond
● Charge-Displacement function defined as a partial integration along a suitable z axis of the 

difference ∆ρ(x, y , z’) between the electron density of the adduct and that of its 
non-interacting fragments placed at the same equilibrium position they occupy in the adduct.



A test application using NOCV/CD



A test application using NOCV/CD
● The core idea of the approach is the decomposition, via natural orbitals for chemical valence 

(NOCV), of the so-called charge-displacement (CD) function into additive Chemically 
meaningful components.



A test application using NOCV/CD
The Au20 − Fl complex and the CD analysis for the bond 



PyBERTHART a real-time TDDFT implementation
The time-dependent equation for Hartee-Fock and density functional theory can be reformulated in 
terms of the Liouville-von Neumann (LvN) equation. In an orthonormal basis set the LvN equation 
reads:

D(t) and F (t) are the one-electron density matrix and time-dependent Fock matrix respectively



PyBERTHART a real-time TDDFT implementation
The solution we are seeking for the density matrix reads as:

Within a small time step ∆t, the time evolution operator U is defined according to the exponential 
midpoint rule as:

A finite time propagation is carried out by repeatedly applying thepropagator in each time step.



PyBERTHART a real-time TDDFT implementation
Induced dipole moment in H2 molecule. 
The representation of the external field 
is also reported as a yellow line. 



PyBERTHART a real-time TDDFT implementation



PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group 
12 atoms (Zn,Cd,Hg) features 
spin-forbidden transitions.  

A proper relativistic framework is 
needed in order to reproduce 
forbidden transitions
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PyBERTHART a real-time TDDFT implementation
The absorption spectrum of group 
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Conclusions
● We improved and extended the usability of the software  both in term of user 

experience (PyBERTHA) and in terms of molecular system dimensions  the user ia 
able to deal with (Parallelization)

● Full parallel implementation of the DKS module of the program BERTHA featuring (i) 
no serial portions of code and (ii) a complete distributed memory approach. Indeed, 
all-electron four-component DKS calculations on systems as costly as the Au32 gold 
cluster, with more than 25 000 basis functions are now feasible with BERTHA 
provided that a minimal amount of memory per core (as small as 2 GiB) is available

● It is now easy to extend the API as needed. In a future coming version we are 
planning to add all the fundamental functions to specify the input geometry and 
basis set in a more user-friendly (i.e. pythonic) way.
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